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Nonlinear Transmission Lines
for Pulse Shaping in Silicon
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Abstract—Nonlinear transmission lines (NLTL) are used for
pulse shaping. We developed the theory of pulse propagation
through the NLTL. The problem of a wide pulse degenerating
into multiple pulses rather than a single pulse is solved by using
a gradually scaled NLTL. We exploit certain favorable properties
of accumulation-mode MOS varactors to design an NLTL that
can simultaneously sharpen both rising and falling edges. There
is a good agreement among the theory, simulations, and measure-
ments.

Index Terms—Accumulation-mode varactors, edge sharpening,
nonlinear effects, nonlinear transmission lines, pulse shaping, soli-
tons, transmission lines.

I. INTRODUCTION

THE concept of a solitary wave was introduced to science
by John Scott Russell 170 years ago [1]. In 1834 he ob-

served a wave which was formed when a rapidly drawn boat
came to a sudden stop in narrow channel. According to his diary,
this wave continued “at great velocity, assuming the form of a
large solitary elevation, a well-defined heap of water that con-
tinued its course along the channel apparently without change of
form or diminution of speed.” These solitary waves, now called
solitons, have become important subjects of research in diverse
fields of physics and engineering. There is a considerable body
of work on solitons in applied mathematics (e.g., [2], [3]), ap-
plied physics—especially in optics (e.g., [4]–[7])—and a few
works in electronics [8]–[10]. The ability of solitons to prop-
agate with small dispersion can be used as an effective means
to transmit data, modulated as short pulses over long distances;
one example of this is the ultra wideband impulse radio that has
recently gained popularity [16].

An important related application is pulse sharpening for the
more traditional nonreturn-to-zero (NRZ) data transmission in
digital circuits by improving the edges of the pulses. Improving
the transitions by shrinking the rise and fall times of pulses can
be useful in other applications, such as high-speed sampling and
timing systems. Nonlinear transmission lines (NLTLs) sharp-
ening of either the rising or falling edge of a pulse has been
demonstrated on a GaAs technology [9], [10]. However, to the
best of our knowledge, to this date there has been no demon-
stration of simultaneous reduction of both rise and fall times in
an NLTL. Neither are we aware of any demonstration of such
NLTLs in silicon-based CMOS process technologies.
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In this work, we first show a soliton line on a conventional sil-
icon technology, which can achieve very narrow pulses with a
bandwidth in excess of the cut-off frequency of the fastest
transistor in this process. Next, we demonstrate that using a
favorable characteristic of MOS varactors, which leads to a dif-
ferent kind of nonlinearity, we can improve both the rise and fall
times, simultaneously. This is not possible with the nonlinear
elements commonly used in the NLTLs (e.g., reverse bias PN
junctions). Neither can it be done using transistors, as they are
limited by their unity gain frequency, .

In this paper, the propagation of soliton waves in a nonlinear
transmission line will be studied. We introduce two different
types of nonlinear transmission lines to generate narrow pulses
and to sharpen pulse transitions, respectively. Finally, we show
the experimental results verifying the agreement between the
theory and the measurement.

II. THEORY OF NONLINEAR TRANSMISSION LINE

In this section we review the basic theory behind nonlinear
transmission lines and their use for pulse narrowing and edge
sharpening in Sections II-A and II-B, respectively. Fig. 1 shows
an example of a nonlinear transmission line using inductors, ,
and voltage-dependent (hence nonlinear) capacitors, .

By applying KCL at node , whose voltage with respect to
ground is , and applying KVL across the two inductors con-
nected to this node, as shown in [15], one can easily show that
voltages of the adjacent nodes on this NLTL are related via

(1)

The right-hand side of (1) can be approximated with partial
derivatives with respect to distance, , from the beginning of the
line, assuming that the spacing between two adjacent sections is

(i.e., .) An approximate continuous partial differen-
tial equation can be obtained by using the Taylor expansions of

, , and , as shown in the Appendix, to
evaluate the right-hand side of (1), i.e.,

(2)

Defining and as the inductance and
capacitance per unit length, respectively, we write (2) as

(3)
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Fig. 1. Nonlinear transmission line.

It is noteworthy that for a continuous transmission line ( ),
(3) reduces to

(4)

In a linear transmission line when , (4) can
be written as

(5)

A. Pulse Narrowing Nonlinear Transmission Lines

In this section, we approximate the capacitor’s voltage de-
pendence using the following first-order linear approximation:

(6)

where and are constants. In this case, (3) reduces to

(7)

where the left-hand side is the classic wave equation, and the
first and second terms on the right-hand side represent disper-
sion and nonlinearity, respectively.

If the effect of the dispersive and nonlinear terms in (7) are
on the same order of magnitude, it is possible to have a single
pulse solution for (7) with a profile that does not change as it
propagates with velocity, . A propagating mode solution can be
obtained by converting the partial differential equation (PDE)
of (7) to an ordinary differential equation (ODE) by a simple
change of variable, . The complete derivation can be
found in [15]. This solution is

(8)

where is the propagation velocity of the pulse and
. It can be proven mathematically that (8)

is the only physically meaningful traveling wave solution to
(7) that maintains its shape while propagating through NLTL.
This solution is shown in Fig. 2 for three different values of

and , and hence different . Note that this solution is not
a function of the input waveform, and thus any arbitrary input
will eventually turns into (8), if it goes through a line which is
long enough.

As can be seen from (8), the peak amplitude is a function
of the velocity. Defining an effective capacitance, , so that

, the pulse height is given by

(9)

Fig. 2. Three normalized soliton shapes for different values of and .
(a) and . (b) and . (c)
and .

Using (9), we can relate to an effective voltage . It is
straightforward to show that

(10)

So it is the capacitance at one-third the peak amplitude that de-
termines the effective propagation velocity. Using (8)–(10) we
can easily calculate the half-height width of the pulse to be

(11)

As can be seen, in a weakly dispersive and nonlinear transmis-
sion line, the nonlinearity can counteract the normally present
dispersive properties of the line maintaining solitary waves that
propagate without dispersion. This behavior can be explained
using the following intuitive argument. The instantaneous prop-
agation velocity at any given point in time and space is given by

. In the presence of a nonlinear capacitor with a charac-
teristic given by (6), the instantaneous capacitance is smaller for
higher voltages. Therefore, the points closer to the crest of the
voltage waveform experience a faster propagation velocity and
produce a shock-wave front, due to the nonlinearity, as shown
symbolically in the upper part of Fig. 3. Note that this is not a
real waveform and more a fictitious representation of how each
point on the curve tends to evolve. On the other hand, disper-
sion of the line causes the waveform to spread out, as shown in
the lower half of Fig. 3. For a proper nonlinearity determined by
(7), these two effects can cancel each other out.

A few important observations are: 1) the velocity of the soli-
tary wave increases with its amplitude; 2) pulse width decreases
with increasing pulse velocity; 3) the width shrinks for higher
amplitudes; and 4) the sign of solution depends on the sign of
nonlinearity factor, , i.e. for a capacitor with a positive voltage
dependence (e.g., an nMOS varactor in accumulation mode) we
have

(12)

resulting in upside-down pulses.
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Fig. 3. Dispersion and nonlinear effects in the NLTL.

Fig. 4. Capacitance versus voltage for a MOSVAR.

Based on these results, to achieve large-amplitude narrow
pulses, inductance and capacitance of the NLTL must be as
small as possible, and nonlinearity factor, , should be large
enough to compensate the dispersion of the line.

It is also important to know the characteristic impedance of
these lines (for impedance matching, etc.). As in a NLTL the
capacitance is a function of voltage, we can only define an ef-
fective semi-empirical value for the characteristic impedance.
Simulation results indicate that one can approximate using
the capacitance at defined in (13), i.e.,

(13)

B. Edge Sharpening Lines

It is possible to design NLTLs to sharpen the pulse transi-
tions. This is particularly useful for digital transmission such as
NRZ data. Unfortunately, all the efforts in the past [6] have re-
sulted in sharpening of only one of the rising and falling edges.
This, however, has very little practical value, as both transitions
are equally important in common NRZ digital systems. This
problem can be traced back to the monotonic dependence of
the nonlinear capacitive elements used in NLTL on the voltage
[e.g., reverse biased PN junction, or the ideal behavior of (6) and
(12)].

Fortunately, CMOS processes offer different characteristics
for nonlinear capacitors that can be exploited to achieve simul-
taneous edge sharpening for both rising and falling edges. More
specifically, accumulation-mode MOS varactors [11] (an nMOS
capacitor in an n-well) offer nonmonotonic voltage dependence.
Particularly, the secondary reduction of capacitance shown in
Fig. 4 due to poly-silicon depletion [12], [13] and short-channel
charge quantization [13] effects can be used for edge sharp-
ening.

Fig. 5 shows symbolically how one can use the behavior of
Fig. 4 to sharpen both edges. First, let us focus on the rise-

Fig. 5. How rise and fall time vary within the NLTL.

time reduction. Consider the rising edge shown in the upper
part of Fig. 5. Initially the voltage is low, which corresponds
to a smaller capacitance per Fig. 4, and hence a faster instan-
taneous propagation velocity for the lower end of the pulse. As
the voltage goes up, the capacitance increases, resulting in a de-
crease in the instantaneous propagation velocity. This pushes the
lower end of the transition forward in time and results in sharp-
ening of the rising edge. This effect is symbolically shown in
the fictitious middle waveform of Fig. 5. The fall time reduction
can be explained using the lower part of Fig. 5. This is where
the nonmonotonic behavior of Fig. 4 plays its role. The upper
part of the transition (voltages above ) will be accelerated due
to the reduction of the capacitance and will create an advancing
front, as symbolically shown in the middle waveform of Fig. 5.
The lower capacitance at the very low voltages can generate a
leading tail, which will be partially dissipated by the line. The
weak reduction in capacitance from to versus reduction
from to results in mismatched rise/fall time as can be seen
in Figs. 5 and 11.

While the above explanation based on a simplified memory-
less description of the line provides a basic intuition for its op-
eration, a complete description can only be obtained by solving
the differential equation in (3) to account for the memory of
the system.1 Our numerical solution of (6) also confirms that as
long as the input voltage range exceeds voltages, and , for
a range of ’s and ’s, the line sharpens both rising and falling
edges, simultaneously.

It may also be possible to achieve a symmetrical wave form
in the following ways.

1) Using an n-type and a p-type MOSVAR in parallel to
create a symmetrical curve. The problem with this
method is that a p-type MOSVAR is not as fast as n-type
MOSVAR, therefore, the frequency response of the line
would be limited to the frequency response of the p-type
MOSVARs.

2) Using two n-type MOSVAR at each node, as shown in
Fig. 6. This way, we can have a symmetrical curve,
however the capacitance of each node would be twice as
large which limits the cut-off frequency of the line by
a factor of 1.4. Another limitation of this method is the
additional parasitic capacitance to the substrate that may
lower the effective nonlinearity factor, , of the capacitors.

1We hypothesize that other dynamic effects in the MOS varactor may also
help edge sharpening, e.g., the processes of charge being attracted from the n+
diffusions to the channel and repelling them are not exact inverses of each other
over short time intervals. Some of the repelled accumulation charges will be
absorbed inside the well. This changes the response time of the capacitor and
keeps it higher for a longer period of time for the falling edge.
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Fig. 6. Proposed NLTL for symmetrical edge sharpening.

Fig. 7. Simple model of a lossy nonlinear transmission line.

In this work, the goal was to achieve the minimum rise time
while decreasing the fall time at the same time, so we used a
single capacitor at each node. For other applications with dif-
ferent objectives one of these alternative methods may be pre-
ferred.

III. EFFECT OF LOSS

Fig. 7 shows a simple model of a lossy nonlinear transmission
line. By applying KCL at node , whose voltage with respect to
ground is , and applying KVL across the two branches con-
nected to this node, as shown in [15], one can easily show that
voltages of adjacent nodes on this NLTL are related via

(14)

where is the resistance of each section.
An approximate continuous partial differential equation can

be obtained similar to (2) as

(15)

Unfortunately, we could not find an analytical solution for (15)
and had to use numerical methods to solve it.

Another model for the loss of the transmission line is shown
in Fig. 8. In this case one can show that the governing equation
of the line is

(16)

which can be reduced to Burgers equation [14], [15] as shown
in [15].

Fig. 8. Simple model of a lossy nonlinear transmission line.

Fig. 9. Schematic of the gradually scaled nonlinear transmission line.

In both models, the numerical solution of the governing equa-
tions shows that loss has an effect similar to the dispersion,
meaning that loss causes the waveform to spread out, so in order
to have a soliton pulse in a lossy nonlinear transmission line,
nonlinearity should be strong enough to cancel out both disper-
sion and loss.

IV. GRADUALLY SCALED NLTL

One problem in pulse narrowing NLTLs is that if the input
pulse is wider than a certain minimum related to the natural
pulse width of the line in (11), the line is incapable of concen-
trating all that energy into one pulse and instead the input pulse
degenerates into multiple soliton pulses, as shown in the simu-
lated upper waveforms of Fig. 10. This is an undesirable effect
that cannot be avoided in a standard line.

We can solve this problem by using gradually scaled non-
linear transmission lines [9]. We notice that the characteristic
pulse width of the line is controlled by the node spacing, , and
the propagation velocity, , which is in turn controlled by
and . Thus, we use a gradual line consisting of several seg-
ments that are gradually scaled to have smaller characteristic
pulse width, as shown in Fig. 9.

The first few segments have the widest characteristic pulse,
meaning that their output is wider and has smaller amplitude.
As a result, the input pulse will cause just one pulse at the output
of these segments. The following segments have a narrower re-
sponse and the last segment has the narrowest one. This will
guarantee the gradual narrowing of the pulses and avoids degen-
eration. Each segment has to be long enough so that the pulse
can reach the segment’s steady-state response before entering
the next segment.

One design consideration is that the characteristic impedance
of each segment matches those of the adjacent segments to avoid
reflections. This requires the same scaling factor for both and
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Fig. 10. Output waveforms of the normal and gradual soliton line.

, so that their ratio remains constant. If we assume a linear ap-
proximation for - curve of the voltage variable capacitors,
we could mathematically model the scaled inductors and vari-
able capacitors as

(17)

where and

(18)

where and represent the inductance and 0 V bias capaci-
tance of the input stage respectively, is the distance from the
input node, and and are the tapering factor of the capaci-
tors and inductors, respectively. Here the assumption is that each
section is scaled compared to its previous one and and are
rate of the scaling of capacitors and inductors, respectively. That
is, we have a NLTL with no two adjacent sections at the same
scale. Now we can write a wave equation for a gradually scaled
NLTL by plugging (17) and (18) into (3):

(19)

(20)

Fig. 11. Measured characteristic of MOSVAR used in the line.

assuming and , where is the length of the
line, we can simplify the above equation to

(21)

we can use numerical methods to solve the PDE in (21). Under
the assumption that , one can approximate (21)
and obtain the width of the pulse as

(22)

Based on (22), as a pulse travels along the line ( increases),
its width will decrease. The waveforms of this gradually scaled
NLTL are shown in the lower part of Fig. 10, demonstrating the
effectiveness of this technique. It is noteworthy that this gradu-
ally scaling technique is also applicable to the edge sharpening
lines and does improve their performance, as well.

V. SIMULATION

We have designed one edge sharpening and two pulse nar-
rowing NLTLs with different tapering factors ( and ) using
the accumulation-mode MOS varactors and metal micro-strip
transmission lines in a 0.18- BiCMOS process. Fig. 11
shows the measured characteristic of the accumulation-mode
MOSVAR used in this design. All the capacitors have similar

- characteristics; however, we used different capacitances
along the line in order to build a gradually scaled NLTL.

To achieve the lowest pulse width in the pulse narrowing lines
or the shortest rise and fall times in the edge sharpening line, it is
necessary to carefully select the dc level and the voltage swing.
In general, this may be an additional constraint in system design
since it will require additional dc level shifting and amplification
or attenuation to adjust the input levels. Nonetheless, this level
of signal conditioning is easily achieved in today’s integrated



AFSHARI AND HAJIMIRI: NONLINEAR TRANSMISSION LINES FOR PULSE SHAPING IN SILICON 749

Fig. 12. Simulated output waveform of the pulse narrowing line.

circuits. The dc level and the voltage swing for each application
is mentioned in the following sections.

All three lines consist of one hundred capacitors and one hun-
dred inductors. We simulated the passive transmission lines in
Sonnet [17] and the complete NLTL in ADS [18]. Next, we will
discuss the details specific to each kind of lines separately.

A. Pulse Narrowing Lines

For pulse narrowing lines, we would like to have the max-
imum change in the capacitance with voltage. Thus, we chose
the baseline dc bias point at 0.8 V which corresponds to the
maximum capacitance point, and applied negative input pulses
from this dc level. For a typical pulse amplitude of 1 V, the ef-
fective nonlinearity factor in (12) is around 0.5 . As we
explained in Section IV, the lines are not continuously scaled,
but consist of several segments with constant values of induc-
tors and capacitors within a segment. (However it turns out that
a continuous scaling of the line is preferable because of internal
reflections between different segments of the line due to mis-
match). The inductances and capacitances within each segment
are lower than those of the previous segment. One of the lines
consists of three different segments and the other of four. The
results reported in this subsection and Section VI are those as-
sociated with the four-segment line which has a smaller pulse
width. The lines are designed in such a way that the character-
istic pulse width of each segment [given by (11)] is half that of
the previous segment so the line can at least compress the input
pulse by a factor of sixteen without degenerating into multiple
pulses.

The simulated output waveform of the line to a 65 ps wide
input pulse is shown in Fig. 12. The simulation predicts that
this silicon-based NLTL can produce negative pulses as narrow
as 2.5 ps (half amplitude width) with a 0.8 V amplitude at the
output. It is noteworthy that transistors in this process are inca-
pable of producing pulses nearly as narrow as those generated
by the NLTL.

B. Edge Sharpening Lines

As we showed in the Section II-B, to build an edge sharp-
ening line we need take advantage of the non monotonic -
behavior exemplified by the secondary reduction in the capac-
itance, as shown in Fig. 11. Computer simulations show the
best bias point and voltage swing are around 0.25 and 2 V
at the input, respectively. Although these levels led to the best

Fig. 13. Simulated input and output waveforms of the edge sharpening line.

achievable improvement in the rise and fall times, the line still
enhances the rising and falling edges for input signal voltage
swings between 1.5 and 2 V. Fig. 13 shows the simulated input
and output waveforms of this line.

The output pulses exhibit reduced rise and fall times of 1.5
and 20 ps, respectively. The rise and fall times of the output
pulses are different because of the asymmetrical behavior of the
nonlinear element for two different edges. We have also simu-
lated this line with a pseudo-random data source and verified its
edge sharpening functionality for any arbitrary data sequence.2

Unfortunately in this line, we cannot fully control the char-
acteristic impedance of the lines because we have to pick the
lowest capacitance and inductance—limited by the parasitic
elements—to obtain that maximum improvement in the rise
and fall times. This will allow us to maximize the cut-off
frequency of the line. However, it is not possible to build very
small nonlinear capacitors, because if we shrink the size of
the accumulation-mode MOSVARs the effect of the parasitic
capacitors becomes more important. These parasitic capacitors
are voltage independent, hence linear, and will result in an
effective reduction of the non linearity factor, , in (12). In this
design, the effective input impedance of the edge sharpening
line is around 20 gradually scales to 50 at the output.
So the input reflection coefficient of the line is roughly 0.4.
We must take this effect into account to be able to match the
simulation and the measurement results.

VI. EXPERIMENTAL RESULTS

All three lines were fabricated in a 0.18- BiCMOS tech-
nology. Fig. 14 shows a chip microphotograph. We use RF
probes to apply input to the line and to measure its output wave-
form. A 50 GHz sampling oscilloscope is used to measure the
input and output waveforms. A -connector system of probes,
connectors, and cables with a bandwidth of approximately
40 GHz is used to bring the data to the oscilloscope. The main
challenge in this measurement is the low bandwidth of the
measurement system compared to the signal bandwidth, so it is
essential to characterize the measurement setup carefully.

First, the oscilloscope was characterized using a signal
source. We swept the source frequency and measured the
amplitude of the signal on the oscilloscope, then using the same
signal source, cables, and connectors, we measured the signal

2There seems to be some data dependant delay due to the nonlinear behavior
of the lines in the simulations (see Fig. 13). This could have some implications
for the data dependant jitter in the lines, which merits further studies.
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Fig. 14. Chip microphotograph: the middle line is an edge sharpening line and the other two are pulse narrowing lines.

Fig. 15. Response of the oscilloscope.

Fig. 16. Response of the cables, connectors, and probes.

amplitude using a wideband power meter. The ratio of these two
values is the amplitude response of the oscilloscope. Fig. 15
shows this response. Then we characterize all other cables,
connectors, probes, and bias tees using a 50 GHz network
analyzer. The response of these parts is shown in Fig. 16.

Fig. 17. Input and output of pulse narrowing line.

Fig. 18. Response of the measurement setup to an ideal input.

The amplitude response of the entire measurement setup is the
product of Figs. 15 and 16. Using Matlab [19], one can show
that the 10%–90% rise-time of such system is around 10.5 ps,
which indicates that it is not possible to resolve rise times lower
than 10.5 ps and pulse widths lower than 21 ps.

Fig. 17 shows the measured response of the pulse narrowing
line to a 50 ps input pulse. Based on response of the measure-
ment setup (Figs. 15 and 16), the response of the measurement
setup to a 2.5 ps pulse is 21.5 ps wide. The measured pulse width
is 22 ps, which is in good agreement with the simulation.

Matlab simulations show that if we have an ideal pulse with
rise and fall times of 1.5 ps and 20 ps, we should expect rise and
fall times of 10.5 ps and 23 ps, respectively, with this measure-
ment setup, as it is shown in Fig. 18. The measured rise and fall
times for this line are 11 ps and 25 ps, as shown in Fig. 19. Also
it is important to note that the rise and fall times do not change
with the input amplitude, as shown in Fig. 20, which verifies the
nonlinear behavior of the line.

In the end, it is important to notice that we can set an upper
bound for the pulse width of output pulses of our pulse nar-
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Fig. 19. Input and output waveforms of the edge sharpening line.

Fig. 20. Output waveforms of the edge sharpening line with different
amplitude.

rowing line and rise and fall times of our edge sharpening line
instead of measuring the exact values. To be accurate, we should
import the frequency response of measurement system and our
measured pulse width and rise/fall times to a computer simulator
(like Matlab) and find out the upper limit of these parameters.
In this case, computer simulations shows that the pulse width of
output of pulse narrowing line and rise time of output pulse of
edge sharpening line are less than 8 ps and fall time of output
pulse of edge sharpening line is around 23 ps.

VII. CONCLUSION

We have introduced and analyzed pulse narrowing and
edge sharpening passive nonlinear transmission lines, using
accumulation-mode MOS varactors and the gradual scaling
lines, showing simultaneous edge sharpening for both rising
and falling edges in silicon. The experimental results show
considerable improvement in the rise and fall times of the
pulses These lines can have applications in ultra-wideband

systems, broadband signal generations, and high-speed serial
communications.

APPENDIX

Assuming a small , and ignoring the high-order terms, we
obtain

(A1)

(A2)

(A3)

Substituting (A1)–(A3) into (1) we obtain

(2)

ACKNOWLEDGMENT

The authors would like to thank D. Ham, H. Wu, A. Komijani,
C. White, M. Sharif, M. Taghivand, H. Hashemi, S. Kee, and B.
Analui of Caltech and Prof. M. Horowitz of Stanford University
for helpful discussions, and M. Azarmnia for support. They also
acknowledge IBM Corporation for prototype fabrication, and
Agilent Technologies for test equipment support.

REFERENCES

[1] J. S. Russell, “Report on waves,” in Rep. 14th Meeting of the British
Association for the Advancement of Science, Sep. 1844, pp. 311–90.

[2] P. G. Drazin and R. S. Johnson, Solitons. Cambridge, U.K.: Cambridge
Univ. Press, 1989.

[3] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering
Transform. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1981.

[4] J. R. Tailor, Optical Solitons—Theory and Experiment. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

[5] R. K. Bullough and P. J. Caudrey, Solitons. Berlin, 1980: Springer-
Verlag.

[6] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and
Chaos. Cambridge, U.K.: Cambridge Univ. Press, 1990.

[7] P. J. Olver and D. H. Sattinger, Solitons in Physics, Mathematics, and
Nonlinear Optics. New York: Springer-Verlag, 1990.

[8] M. Remoissenet, Waves Called Solitons: Concepts and Experi-
ments. Berlin, Germany: Springer-Verlag, 1994.

[9] M. G. Case, “Nonlinear Transmission Lines for Picosecond Pulse, Im-
pulse and Millimeter-Wave Harmonic Generation,” Ph.D. dissertation,
Univ. of California, Santa Barbara, 1993.

[10] M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman, and K.
Giboney, “GaAs nonlinear transmission lines for picosecond pulse gen-
eration and millimeter-wave sampling,” IEEE Trans. Microwave Theory
Tech., vol. 39, no. 7, pp. 1194–1204, Jul. 1991.

[11] E. Kameda, T. Matsuda, Y. Emura, and T. Ohzone, “Study of the current-
voltage characteristics in MOS capacitors with Si-implanted gate oxide,”
Solid-State Electron., vol. 43, no. 3, pp. 555–63, Mar. 1999.

[12] S. Matsumoto et al., “Validity of mobility universality for scaled
metal-oxide-semiconductor field-effect transistors down to 100 nm gate
length,” J. Appl. Phys., vol. 92, no. 9, pp. 5228–32, Nov. 2002.

[13] L. Larcher, P. Pavan, F. Pellizzer, and G. Ghidini, “A new model of gate
capacitance as a simple tool to extract MOS parameters,” IEEE Trans.
Electron Devices, vol. 48, no. 5, pp. 935–45, May 2001.



752 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 3, MARCH 2005

[14] E. R. Benton and G. W. Platzman, “A table of solutions of the of the
one-dimensional Burgers equation,” Quart. Appl. Math., pp. 195–212,
Jul. 1972.

[15] E. Afshari et al., “Inhomogenous transmission lines: One- and two-di-
mensional models,” SIAM J. Appl. Math., submitted for publication.

[16] R. A. Scholtz, “Signal selection for the indoor wireless impulse radio
channel,” in Proc. IEEE Vehicular Technology Conf., May 1997.

[17] High Frequency Electromagnetic Software. SONNET Software. [On-
line]. Available: http://www.sonnetusa.com/

[18] Advanced Design System User Guide, Agilent, Palo Alto, CA.
[19] Matlab user Guide. MathWorks, Natick, MA. [Online]. Available:

http://www.mathworks.com/

Ehsan Afshari (S’97) was born in Tehran, Iran in
1979. He received the B.S. degree in Electronics En-
gineering from the Sharif University of Technology,
Tehran, Iran and the M.S. degree in electrical engi-
neering from the California Institute of Technology,
Pasadena, in 2003, where he is currently working to-
ward the Ph.D. degree.

His research interest is analog integrated circuits
and systems design using new technologies, ultra
high speed circuit design for wireless communica-
tions.

Mr. Afshari was honored as the nation’s Best Engineering Student by the
President of Iran. He was also the recipient of the Best Student Paper Award
at the Custom Integrated Circuits Conference (CICC), September 2003, the
Best Undergraduate Paper Award at the Iranian Conference on Electrical En-
gineering, 1999, the recipient of the Silver Medal in the Physics Olympiad in
1997, and the recipient of the Award of Excellence in Engineering Education
from the Association of Professors and Scholars of Iranian Heritage (APSIH)
in May 2004.

Ali Hajimiri (S’95–M’99) received the B.S. degree
in electronics engineering from the Sharif University
of Technology, Tehran, Iran, and the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1996 and 1998, respectively.

He was a Design Engineer with Philips Semicon-
ductors, where he worked on a BiCMOS chipset for
GSM and cellular units from 1993 to 1994. In 1995,
he was with Sun Microsystems, where he worked on
the UltraSPARC microprocessor’s cache RAM de-
sign methodology. During the summer of 1997, he

was with Lucent Technologies, Laboratories, Murray Hill, NJ, where he inves-
tigated low-phase-noise integrated oscillators. In 1998, he joined the Faculty of
the California Institute of Technology, Pasadena, where he is an Associate Pro-
fessor of Electrical Engineering and the director of Microelectronics and Noise
Laboratories. His research interests are high-speed and RF integrated circuits.
He is a coauthor of The Design of Low Noise Oscillators (Kluwer, 1999) and
holds several U.S. and European patents. He is a cofounder of Axiom Microde-
vices Inc.

Dr. Hajimiri is on the top 100 innovators (TR100) list. He was the Gold Medal
winner of the National Physics Competition and the Bronze Medal winner of the
21st International Physics Olympiad, Groningen, Netherlands. He was a core-
cipient of the International Solid-State Circuits Conference (ISSCC) 1998 Jack
Kilby Outstanding Paper Award and a three times winner of the IBM faculty
partnership award as well as National Science Foundation CAREER award.
He is an Associate Editor of the IEEE JOURNAL OF SOLID-STATE CIRCUITS

(JSSC) and a member of the Technical Program Committee of the International
Solid-State Circuits Conference (ISSCC). He has also served as an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS (TCAS) PART II,
a member of the Technical Program Committees of the International Conference
on Computer Aided Design (ICCAD), Guest Editor of the IEEE TRANSACTIONS

ON MICROWAVE THEORY AND TECHNIQUES, and a member of the Guest Editorial
Board of the Transactions of Institute of Electronics, Information and Commu-
nication Engineers of Japan (IEICE).


