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Ultrafast Analog Fourier Transform Using 2-D LC
Lattice

Ehsan Afshari, Member, IEEE, Harish S. Bhat, and Ali Hajimiri, Member, IEEE

Abstract—We describe how a 2-D rectangular lattice of induc-
tors and capacitors can serve as an analog Fourier transform de-
vice, generating an approximate discrete Fourier transform (DFT)
of an arbitrary input vector of fixed length. The lattice displays
diffractive and refractive effects and mimics the combined optical
effects of a thin-slit aperture and lens. Diffraction theories in optics
are usually derived for 3-D media, whereas our derivations proceed
in 2-D. Analytical and numerical results show agreement between
lattice output and the true DFT. Potentially, this lattice can be used
for an extremely low latency and high throughput analog signal
processing device. The lattice can be fabricated on-chip with fre-
quency of operation of more than 10 GHz.

Index Terms—Discrete Fourier transforms, lattice circuits,
physical theory of diffraction, planar transmission lines, ultra-fast
analog signal processing.

I. INTRODUCTION

T HE 2-D lattices of inductors and capacitors (2-D LC lat-
tices), an example of which is diagrammed in Fig. 1, are

a natural generalization of 1-D transmission lines. In our ear-
lier work [1], general models for 2-D LC lattices were derived,
starting from Kirchhoff’s laws of voltage and current. These
models consist of partial differential equations (PDEs) arising
from continuum and quasi-continuum limits, which are valid for
signals with frequency content below a certain threshold value.
Based on the PDE models and numerical simulations, it was
found that a 2-D LC lattice could be used as a power combiner.
Such a lattice has been designed and fabricated on chip [2] in a
0.13 m SiGe BiCMOS process, where it has been used to im-
plement a power amplifier that generates 125 mW at 85 GHz.

Here we apply a combination of continuum modeling, scalar
diffraction theory, and numerical simulation to demonstrate that
2-D LC lattices can generate approximate Fourier transforms of
input signals. Let us be more specific about this claim. Suppose
we are given an input vector of length , denoted by .
In this case, we work with a 2-D LC lattice that has nodes in
the horizontal direction and nodes in the vertical direction.
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Fig. 1. 2-D lattice of inductors and capacitors (2-D LC lattice).

For definiteness, in this paper we use (1,1) and to de-
note, respectively, the lower-left and upper-right corners of the
lattice. We drive the left boundary of the lattice with the voltage

where is an appropriate scaling factor, is the -th compo-
nent of the input vector , and is an appropriate carrier fre-
quency. Later in this paper we describe how to choose the lattice
inductances and capacitances in a certain way, to take
advantage of electrical analogues of optical phenomena such as
refraction and diffraction. Our claim is that in such a lattice, the
voltage at the right boundary will take the form

Here is an appropriate scaling factor, and is the -th com-
ponent of the output vector , which will turn out to be an ap-
proximation of the exact discrete Fourier transform of , i.e.,

. We may think of and as -vectors
of phasors, or, equivalently, as elements of the complex vector
space .

A. Methodology and Merits

As mentioned, our solution takes advantage of the connection
between 2-D LC lattices in optics. For waves with sufficiently
large wavelength, Kirchhoff’s laws of voltage and current for a
2-D LC lattice can be approximated very well by a continuum
model consisting of the scalar wave equation. The same PDE
arises in the context of optics; starting from this PDE, the theo-
ries of Kirchhoff, Sommerfeld, Fresnel, and Huygens show that
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a thin-slit diffraction aperture can be used to generate an analog
Fourier transform of an image. Such theories assume, typically,
that light propagates in a 3-D continuum such as air. In this
paper, we present analytical and numerical results for thin-slit
diffraction in a 2-D LC lattice. Together, these results indicate
that by choosing lattice capacitance/inductance, lattice size, and
input carrier frequency in a careful way, we can design 2-D LC
lattices that generate analog Fourier transforms in the same way
as a thin-slit diffraction aperture for 3-D optics.

This is almost the entire solution. Our analysis also indi-
cates that, by itself, the output through a 2-D thin-slit diffrac-
tion suffers a phase shift that can be corrected using a lens. We
show through numerical simulations that a 2-D LC lattice can
be used to refract incoming waves, and therefore that such a lat-
tice can be used as a lens. Our Fourier transform device, there-
fore, is effectively the superposition of a diffractive lattice with
a lattice-based lens. The combination of these effects yields an
in-phase analog Fourier transform.

Using a 2-D LC lattice as an approximate Fourier transform
device has three distinct features. First, the latency of the device,
defined as the time required for the input signal to propagate
from the left to the right boundary, can be be extremely small.
The latency is computed by multiplying the characteristic delay
of the lattice, , by the number of nodes in the hori-
zontal direction. In today’s Silicon processes, inductances of 30
pH and capacitances of 20 fF are achieveable; at values that are
much smaller, parasitic effects become an issue. Therefore, the
delay can be as low as 775 fsec for today’s Silicon processes.
As a rule of thumb, we find that to transform a vector with
components requires a lattice with roughly nodes
in the horizontal direction. As a function of , the latency is

. Using a 2-D LC lattice, a vector of length 1024 could
be transformed in less than 800 psec. Note that the latency is in-
dependent of the carrier frequency , and that it grows linearly
in the size of the input vector .

Second, the device throughput can be extremely high. One
does not need to wait for an input signal to propagate all the
way from the left boundary to the right boundary of the lattice
before injecting a new, different input signal. Inputs could be
stacked in time, and multiple Fourier transforms could be com-
puted without waiting. Preliminary simulations indicate that the
throughput of the lattice can reach 10 Gbits/sec.

Finally, design and fabrication is easier and less costly for LC
lattices than for optical materials with similar properties.

B. Historical Remarks

Classic texts [3], [4] on wave and Fourier optics concentrate
their efforts on 3-D media, ostensibly because most experi-
mental diffraction setups involve light propagation in three
spatial dimensions. However, the propagation of light in 2-D
media has been considered before. Diffraction integrals for
a 2-D dispersion-free continuum were almost surely known
to Sommerfeld—see, for example, equations (2.23)–(2.26) of
Bouwkamp’s survey article [5] and references therein. Recent
work in this area is due to J. J. Stamnes [6]–[10], who has
derived exact, approximate, and numerical results for focusing
and diffraction of 2-D waves. Stamnes’ results stop short of
showing that even for 2-D waves, a standard Fourier transform

integral can be derived. Furthermore, Stamnes’ work deals
exclusively with waves propagating through a dispersionless
continuum, which describes our discrete 2-D LC lattice only
approximately, and only in certain frequency regimes. Other
papers on 2-D diffraction [11], [12] do not differ in this regard.

Our work owes a great deal to the classical approaches of
Sommerfeld and Kirchhoff, also employed by Stamnes. Their
approach for single-slit diffraction problems consists primarily
in using one of Green’s identities to express the diffracted field
at a point in terms of a particular integral around a curve cen-
tered at . Denote this integral by . Next, assume that the
spatial part of the diffracted field is a solution of the Helmholtz
equation

(1)

Knowledge of the radially symmetric solutions of (1), together
with a choice of boundary conditions for the field and its normal
derivative on the aperture of the slit, enables us to pass from the
integral to a diffraction integral. In the present work, we
validate our numerical results on diffraction using this classical
approach.

The main alternative to the Kirchhoff-Sommerfeld approach
outlined above is the geometric or ray theory of diffraction due
to Keller [13], [14] and his collaborators. Application of Keller’s
elegant methods to the context of 2-D LC lattices shall have to
wait until a future publication.

Finally, let us note that the classical work [15] of Brillouin on
crystal lattices makes explicit the analogy between crystal lat-
tices, mass-spring models, and LC lattices in one, two, and three
spatial dimensions. Brillouin’s primary focus in this work was
the development of bandgap theories for lattices with periodic
inhomogeneities. The lattice inhomogeneities we consider are
of an entirely different type.

C. Main Results

In this paper we present the following results.
1) A derivation of a phase-shifted Fourier transform integral

for the illumination of a point source onto a plane screen.
The derivation follows scalar diffraction theory for a thin
slit in a 2-D medium.

2) A numerical demonstration that when lattice size equals a
small number of wavelengths of the input carrier waves, a
discrete 2-D LC lattice can be used as a diffraction aperture.

3) Numerical simulations that show that varying capacitance
in a lens-shaped region in the center of the lattice effec-
tively cancels the phase shift from the Fourier transform
integral. These simulations indicate that the lattice can be
used to compute approximate discrete Fourier transforms
that match the true DFT quite well.

II. LATTICE EQUATIONS AND PDE MODELS

A. Kirchhoff’s Laws

For a 2-D LC lattice that extends infinitely in both directions,
Kirchhoff’s laws of voltage and current read

(2a)
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and

(2b)

(2c)

Here we have assumed that the capacitances and the in-
ductances stay fixed as a function of time. Otherwise the
right-hand sides of (2) would have to be modified, and the dy-
namics of the lattice would be nonlinear. In contrast, system (2)
is linear.

B. Continuum Limit

In earlier work [1], the continuum limit of (3) was derived
using standard Taylor series arguments. In the case of a uniform
lattice, one can arrive at a continuum limit by examining the
dispersion relation, a procedure we now describe. Take
and everywhere, differentiate (2a) with respect to
time, and then substitute (2b), (2c) to derive the single second-
order equation for lattice voltage

(3)

Assume that the spacing between lattice elements is the same in
both and direction, and denote this constant lattice spacing
by . Substituting

one derives the discrete dispersion relation

(4)

When , we may approximate . Therefore, when
and , we have that may be approximated

by . Replace by and by ,
where and are, respectively, inductance and capacitance per
unit length. Assuming that and stay constant in the
limit, we arrive at the continuum dispersion relation

(5)

which is the exact dispersion relation for the scalar wave equa-
tion

(6)

In previous derivations [1], we started with (3), then posited a
continuous function such that ,
expanded and in Taylor series about , and
thereby derived precisely the same PDE model (6). The deriva-
tion of (6) as a continuum model of (3) on the basis of exact/ap-
proximate dispersion relations has its own utility, as we now
show.

C. Range of Validity

One wants to understand, quantitatively, where the continuum
model (6), is valid. Suppose that an acceptable relative error
in the approximation is 3.0%—this is achieved
for , giving us the conditions and

. Because wavelength is related to wave number
by , the conditions on and imply

As long as one wavelength occupies more than 21 lattice spac-
ings, the continuum dispersion relation (5) and PDE (6) is a de-
cent approximation to the fully discrete dispersion relation (4)
and differential (3).

We may go further. For the sake of illustration, let us fix the
inductance and capacitance to be, respectively, pH and

fF. Suppose waves of frequency propagate through
such a lattice, in the direction only. In this case . The
dispersion relation (4) may now be used to determine that, with
these parameters

Then as long as GHz, the cutoff frequency
for validity of the continuum model of the 2-D LC lattice. Note
also that is easy to read off the cutoff frequency for the lattice
itself from the above calculation

GHz

D. Effect of Boundaries

Of course, experimentally realizable lattices must be of finite
extent. Furthermore, when we numerically simulate the lattice
equations, we must take into account appropriate boundary con-
ditions that arise due to finiteness of the lattice. For these reasons
we give a few details regarding Kirchhoff’s laws on the bound-
aries.

For a finite lattice with nodes in the direction and
nodes in the direction, we see that

Equations (2b) and (2c) already take into account contributions
due to voltage nodes on the boundary and need not be modified.
Meanwhile, (2a) for , , , and must
be corrected by deleting those terms on the left-hand side corre-
sponding to edges outside the lattice. Furthermore, we assume
the right boundary of the lattice is resistively terminated with
resistors obeying Ohm’s law, so that the equations for
read
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Fig. 2. Simulation of a uniform 2-D LC lattice showing diffractive effects. The input signal is our choice of forcing function at the left boundary of the lattice, and
the output signal is the signal at the right boundary of the lattice. The forcing is sinusoidal and given by (7), with GHz. Lattice inductances are pH
and lattice capacitances are fF.

with the convention that for and
for . The resistances are chosen to

minimize the reflection coefficient for waves incident on the
right boundary. This is a basic impedance matching problem,
and for a uniform medium the solution is given by choosing

everywhere along the right boundary.

E. A Hypothesis

Suppose we construct a finite, rectangular 2-D LC lattice with
and as mentioned above, and suppose we drive the left

boundary at a frequency of 60 GHz. In this case, the wave (6) is a
good continuum model, leading us to the following hypothesis:
it should be possible to observe in a 2-D LC lattice all those
effects predicted by scalar theories of light—especially scalar
diffraction and refraction—assuming that relevant parameters
have been chosen in such a way that the continuum model is
good. In what follows, we show the validity of this hypothesis.

III. DIFFRACTION: THEORY

Let us turn our attention to waves with wavelength suffi-
ciently large so that only a few wavelengths fit in the finite
lattice. In this situation, we claim that the lattice acts as a
diffraction slit. To give a definite example, consider a 100 80
lattice where we drive the left boundary as follows:

(7)

Take the lattice parameters to be pH and fF, and
take the driving frequency to be GHz. Then the lattice
dispersion relation implies that for a wave propagating only in
the -direction, slightly less than five wavelengths of the wave
fit inside the 100 80 lattice. Of course, if the forcing is of
the form (7), then the wave will not propagate in the -direc-
tion only. Parts of the wave will reflect off the top and bottom
boundaries of the lattice in ostensibly complicated ways, and
we would not expect the outgoing signal, , to look any-
thing like the original input signal. The question is: what will
the output look like?

To try to guess the answer without any calculations, consider
that the problem of squeezing a long wave through a narrow
opening is really just a thin-slit diffraction problem. We are

about to consider the problem of two uniform 2-D continuous
media separated by a thin 1-D slit, where the slit is just a few
wavelengths wide. Waves propagating from left to right through
the slit are diffracted, and one can develop a Huygens–Fresnel
type theory to predict the illumination far to the right of the
aperture, due to a source to the left of the aperture. Roughly
speaking, the illumination will be a phase-shifted Fourier trans-
form of the source.

Going back to the 100 80 lattice with the above choice of
parameters and the sinusoidal forcing (7), Fig. 2 shows what we
see from a numerical simulation of the 2-D LC lattice (2).

The input is a sinusoidal function of the vertical coordinate ,
and the output is clearly a different sort of function altogether. It
turns out that the output is a phase-shifted or “blurry” version of
the 1-D Fourier transform of the input. Eventually we will show
simulations of a lattice with the same parameters except inside
a lens-shaped region in the lattice interior. The lens will cancel
out the phase shift and bring the Fourier transform into focus.

Before discussing these simulations, let us take a moment
to develop the elementary theory of scalar diffraction for 2-D
waves. Though derivations of Kirchhoff and Rayleigh–Som-
merfeld diffraction integrals have appeared in the literature be-
fore, we offer our own derivations here. This is in part because
diffraction of 2-D waves has not attracted much attention in the
literature, and the reader may not be fully aware of the near-
and far-field Hankel function asymptotics necessary to proceed
in this case.

We begin by proving a Green’s identity that forms the corner-
stone of the 2-D wave theory of diffraction. Suppose we have a
2-D domain , as in Fig. 3.

Assume that is a scalar field that satisfies the Helmholtz
equation

Given a point , we want to relate to the values
of on the boundary of , which we label as . Use Green’s
Theorem (with , as solutions of the Helmholtz equation)
which says
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Fig. 3. Setup for deriving Green’s function representation of .

Because and , the left-hand side
of the above equation is zero, i.e.,

The boundary of is the sum of two curves and . The outer
curve is smooth but otherwise arbitrary. The inner curve is
a circle of radius with center . Green’s Theorem says

and because

this implies

(8)

We evaluate the left integral, using the fact that on the curve ,
we have . We set equal to the radially symmetric
solutions of the 2-D Helmholtz equation. These are solutions of
the equation

which is in fact Bessel’s equation. Solutions of Bessel’s equa-
tion are Hankel functions, i.e.,

where is a Bessel function of the first kind and is a Bessel
function of the second kind. Then, denoting the left-hand side
of (8) by , we have

Fig. 4. Setup for deriving Rayleigh–Sommerfeld diffraction integral.

(9)

where we have made the approximations

These approximations are valid for , and the right- and
left-hand sides of (9) have the same asymptotic behavior in the

limit. However, the limit of the right-hand side of
(9) is easily computable, leading to the result

Using this result in (8), we write

(10)

A. Rayleigh–Sommerfeld

Consider diffraction in 2-D from a screen with aperture as
in Fig. 4.

We now use the integral formula (10) to compute with
. We break the integral over into two pieces, i.e.,

(11)
First we do the integral over and give a condition under
which it vanishes. We make use of the following approxima-
tions, valid for
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Using these approximations, one derives

The 2-D Sommerfeld outgoing radiation condition follows: if,
for all

then the integral vanishes, and the only contribution to the
integral comes from . That is, formula (11) reduces to

(12)

At this point, one must choose a Green’s function and
boundary conditions for , and it is here that the theories
of Kirchhoff, Debye, and Rayleigh–Sommerfeld diverge.
Although it is certainly possible to follow all of these paths
in the 2-D case, we pursue the calculation only in the first
Rayleigh–Sommerfeld case. That is, we take to
vanish on all of by choosing

(13)

See Fig. 4 for the meanings of and —these vectors are
simply reflections of each other across the aperture . The point

to the left of is the mirror image of the point to the right
of . In what follows, the outward unit normal points to the left
from . We stipulate the boundary condition that vanishes on

not including ; using this boundary condition and (13), we
find that (12) reduces to

Note that

On , we know that and that
. Therefore

Fig. 5. Huygens–Fresnel picture showing illumination on a line several wave-
lengths away from the thin slit diffraction aperture.

This implies

(14)

This is the 2-D version of the first Rayleigh–Sommerfeld
diffraction integral.

B. Huygens–Fresnel

Our goal here is to determine the illumination onto a plane
screen located several wavelengths away from the aperture. For
diffraction problems in two spatial dimensions, we do not be-
lieve this calculation has appeared previously in the literature.
The picture is given in Fig. 5. Starting from the diffraction in-
tegral (14), we note that inside the aperture , we have

. This gives

We use and approximate

The same approximation strategy gives

The difference between the approximations of and is
that the term appears in with an extra factor of

. Since is assumed large compared with the wavelength,
we keep the term only when appears in the nu-
merator, and drop it whenever appears in the denominator.
This gives
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Fig. 6. Device architecture, showing output nodes that capture either the (a) amplitude or (b) phase and amplitude of the output Fourier transform. (a) Overall
architecture. (b) In-phase/Qaudrature extraction.

Now we use the far-field asymptotics of the Hankel function to
approximate

Inserting this approximation into the integral we have

(15)

where when , and where the constant
. Note that this last integral (15) is the Fourier inte-

gral with phase shift .

C. Interpretation

Let us interpret the result in Fig. 2 from the point of 2-D con-
tinuum diffraction theory just developed. With the chosen values
of , , and , the continuum limit of the 2-D lattice equations
is valid. The lattice used to produce Fig. 2 could fit about five
wavelengths of the carrier wave. Suppose the lattice itself acts as
a diffraction aperture—this would imply that the output should
be given by (15), with as the continuum ver-
sion of the input (7). But unless there is some mechanism to
cancel the phase shift , then the output will not be
recognizable as anything close to the Fourier transform of .
Qualitatively, this is precisely what we observed in Fig. 2.

In the next section, we provide numerical test results that
show two things: 1) it is possible to cancel the phase shift by
modifying the uniform 2-D LC lattice to incorporate a lens;
2) using this modified lattice, the diffracted output at the right
boundary agrees quite well with the predicted Fourier transform.

IV. DIFFRACTION: NUMERICS

A. Lens-Shaped Region

Fig. 6(a) shows one possible architecture of the circuit, with
a lens-shaped region in the interior designed to cancel out the
phase shift in the Huygens–Fresnel integral (15). The lens fo-
cuses the signal on the right (output) edge of the lattice; to
choose lattice parameters such that the correct focal length is
achieved, we used the thin lens formula (23) derived earlier.
Note that the device shown in Fig. 6(a) outputs the amplitude
of the Fourier transform; if we are interested in the phase infor-
mation as well, we can extract it by using two mixers instead of
one in each output node. The modification to each output node is
diagrammed in Fig. 6(b). As shown, using in-phase and quadra-
ture of the signal at each node, we can obtain phase and ampli-
tude of the signal at each node. The trade-off is more complexity
in the system (additional mixer and a 90-degree phase shifter in
each node).

We defer further comments on the implementation to the end
of this paper, and now demonstrate that, modified to include a
built-in lens, the 2-D LC lattice can compute discrete Fourier
transforms of input signals.

B. Fourier Transform

Direct numerical simulations show quite clearly the Fourier
transform capabilities of the 2-D LC lattice. By this we mean
that if the forcing of the lattice’s left boundary is given by

(16)

then the signal at the right boundary will consist of an approxi-
mate, discrete Fourier transform of the spatial part of the input
signal. In what follows, all reported numerical results arise from
solving Kirchoff’s laws (2) for 80 100 lattices, subject to the
boundary conditions described in Section II-D.

1) Sinusoidal Inputs: Fig. 7 shows the Fourier transform of
two sinusoids, with two different spatial wavelengths.

The lattice parameters are nearly the same as before for Fig. 2:
namely, outside the lens-shaped region shown in Fig. 6(a), we
take pH, fF, and GHz. Inside the
lens-shaped region, we leave unchanged but take fF.
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Fig. 7. Results for two different numerical simulations of the 2-D LC lattice showing how diffraction and lensing effects combine to effectively take the spatial
1-D Fourier transform of the input signal. The plots on the left (input signals) correspond to two different choices of in expression (16), with GHz.
The plots on the right (output signals) show as a function of vertical section number , for a particular instant of time . Lattice parameters are

pH and fF, except in a lens-shaped region in the center of the lattice where is unchanged but fF.

The lattice has 80 nodes in the vertical direction and 100 nodes
in the horizontal direction. We force the left boundary with a
sinusoidal forcing function of the form (7), and examine the
output at the right boundary.

To ensure that the simulations are realistic, we add two ef-
fects not present in our mathematical analysis above. Namely,
we add a mutual inductance term that takes into account cou-
pling of adjacent inductors. As mentioned above, the coupling
coefficient for this term is very small compared with unity (0.1),
and the effect is not large. Furthermore, we assume each section
as a resistance of , and that all inductors and capacitors vary
randomly by about 5% from the values reported above.

The output of the circuit shows clearly two peaks, as ex-
pected. Furthermore, the sinusoid with smaller wavelength
(and therefore higher wave number) yields two peaks that are
more widely separated than those generated by the sinusoid
with larger wavelength (and therefore smaller wave number).
Because the aperture of the lens is comparable with the wave-
length of the input signal, diffractive effects are quite important.
The output is not simply a focused version of the input, but a
focused and diffracted version of the input. Comparing Fig. 2
and Fig. 7, it is now clear that the lens brings into focus the
blurry Fourier transform that results from diffraction alone.

Finally, Fig. 7 clearly shows the dc value of the input. The first
waveform has a lower average value compared to the second one
and we can clearly see this difference in our output waveform.

2) Sinc Input: Next we consider the same lattice but with
input equal to a function

(17)

Fig. 8. The sinc input function corresponding to (17) with GHz. The
input is plotted versus vertical section number at a fixed instant of
time .

The input and output signals are shown, respectively, in Figs. 8
and 9.

The output is roughly symmetric, and roughly constant be-
tween elements 28 and 52. The true discrete Fourier transform,
limited to a particular band of wave numbers, would be perfectly
symmetric and have much steeper rise and fall sections than the
curve shown in Fig. 9. However, given that we included just over
two full cycles of the function as input, the output is quite
reasonable.

3) Step Input: Finally, we consider the same lattice but with
input equal to a step function

(18)
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Fig. 9. Fourier transform of the sinc function in a 2-D LC lattice, showing the
output plotted versus vertical section number , at a fixed instant of
time . Lattice parameters are unchanged from Fig. 7.

Fig. 10. Numerical simulation of the 2-D LC lattice (in black) as compared
with our analytical prediction (in blue) and the true Fourier transform (in green)
of the step function input given by (18), with GHz. Lattice parameters
are unchanged from Fig. 7. The black curve shows the numerically computed
values of as a function of vertical section number , for a particular
instant of time .

The output signal is shown in Fig. 10.
The Fourier transform of the step input is a function,

shown by the green curve. Our mathematical analysis predicts
that the output should be given by the blue curve, while the
numerical simulation itself yielded the black curve.

The three curves are qualitatively the same except in the tails,
where there is some discernible disagreement. In the tails, one
finds that our analysis is closer to the numerical simulation than
the true Fourier transform. The error in the tails is due to two
factors: 1) due to boundary effects, the finite lattice is not ex-
actly the same as a thin slit diffraction problem, though it fea-
tures qualitatively identical physics; 2) the lens-shaped region
in the middle of the 2-D LC lattice is too thick for the paraxial
approximation, explained later in (23), to be perfectly accurate.
Better results can be obtained by modifying the Green’s func-
tion and taking into account lens thickness, issues that
we intend to explore in future work.

V. REFRACTION

In the previous section, we presented results for a 2-D LC
lattice with a lens-shaped region in the interior with higher ca-
pacitance. This lens-shaped region is intended to cancel out a

Fig. 11. Incident, reflected, and transmitted waves in a simple refraction
problem.

phase shift that appeared in the Fourier integral (15). The pur-
pose of this section is to discuss the theory and numerics for
lattice refraction, to establish that lensing is indeed possible, as
was assumed in the previous section.

A. Snell’s Law

Fig. 11 shows the simplest scenario: a 2-D LC lattice with a
jump in the delay, , along a horizontal interface. That
is to say, above the interface, the delay equals ,
while below the interface, the delay equals . The
incident wave arrives from above at an angle and is partly
reflected at an angle , and partly transmitted at an angle .

As derived earlier, the continuum model for the lattice is

(19)

where is the voltage and . By assuming that the in-
cident, reflected, and transmitted waves are plane wave solutions
of (19), propagating with the appropriate dispersion relation de-
pending on whether they are in the upper or lower halves of the
lattice, one can apply standard arguments to derive , as
well as Snell’s law

(20)

The derivation of (20) starting from (19) is completely standard
[3], [4] and we shall not repeat it here.

B. Thick Parabolic Lens

Let

so that the curve describes the left boundary of a
parabolic lens. The right boundary of the lens is taken to be a
vertical line as in Fig. 12. We take the delay outside the lens to
be and the delay inside the lens to be . Then the problem
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Fig. 12. Refraction problem for thick parabolic lens.

of determining the path of waves as they propagate through the
lens can be solved by application of Snell’s law.

Suppose we have a wave front propagating from left to right
at angle , incident on the left boundary of the lens. The wave
front’s angle from the normal is given by

Snell’s law gives the angle of the transmitted wave

Of course, is the angle the transmitted wave front makes with
the normal to the curved part of the lens. Subtracting off the
contribution of this normal, we obtain

(21)

The angle is the angle of incidence for the refraction problem
at the right boundary of the lens. This is a consequence of the
fact that the right boundary of the lens is vertical. Simple geom-
etry shows that , where is the focal distance. We
apply Snell’s law again to determine the angle of the outgoing
wave that is transmitted through the right boundary of the lens

(22)

where is given by (21).

C. Paraxial Approximation

Note that we can easily recover the paraxial approximation
from the above formula for . First set . Next assume

, which converts all of the nonlinear functions and
to the identity, i.e., if , then , ,

and and likewise for the inverse functions. Starting with (22)
and following the approximations through, one derives the thin
lens or paraxial formula

(23)

Fig. 13. Refraction in a 2-D LC lattice. The black lines show incident and re-
fracted wave vectors predicted by Snell’s law.

D. Numerics

We simulate the lattice by solving Kirchoff’s laws (2) for an
80 80 lattice with boundary conditions given in Section II-D
of this paper. For these simulations, we have one (or more)
vertical interface separating two (or more) sections of the lat-
tice. In certain sections of the lattice, we have nH and

, while in other sections, we have and
. For the purposes of the following discussion,

we define the following lattice delay constants:

In all simulations that follow, the frequency in time of the
boundary forcing is G rad s.

1) Snell’s Law: For the first simulation, we take the lattice
to have a single interface at . For , the delay
is , while for , the delay is . Hence, the effective
index of refraction is . The incident angle, for the
wave propagating from the left boundary towards the interface,
is approximately rad, and based on Snell’s law we
predict a transmitted angle rad, which is what we
see in the numerical simulation results displayed in Fig. 13.

The black lines are drawn to match the incident and refracted
wave vectors, as predicted by Snell’s law. Note that the black
line in the region is orthogonal to the numerically gener-
ated wavefronts. This implies that, in the direct numerical sim-
ulation, the angle that the refracted waves make with the normal
to the interface is given quite accurately by Snell’s law.

2) Plane Waves Refracted by a Slab: Next we examine a sec-
tion of lattice with delay sandwiched between two sections
with delay . Here we take the incident angle to be zero, and
note the change in wavelength of the wave as it propagates in
the section—see Fig. 14. Here the delay is for and
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Fig. 14. Plane slab showing pure transmission and wavelength expansion in the
section. The lattice delay equals except inside the

section, where the delay equals .

, and the delay is for . Waves propagate
from the left boundary towards the first interface at , un-
dergo refraction and a change in wavelength, and continue prop-
agating to the right until they are refracted again at the
interface, at which point their wavelength increases back to its
original value. Impedance is matched at both interfaces so there
is no reflection, i.e., there is no wave propagating from right to
left from the interface back towards the left boundary.

3) Total Internal Reflection: Finally we present simulation
results showing total internal reflection. Here the wave is
launched from the left boundary and, more specifically, from
the lower-left corner of the lattice consisting of the first 20
nodes on the left boundary. The nodes on the
left boundary with are left open, meaning that waves
will reflect perfectly off those nodes. The wave propagates at
an angle of roughly 56 degrees and hits the interface, located
at . Because the effective index of refraction is ,
the critical angle for total internal reflection is approximately
18.5 degrees, so our incident angle is well beyond that. Fig. 15
shows clearly the wave bouncing off the boundary at
approximately , then propagating back towards the left

boundary, and then continuing to bounce off different
boundaries as it propagates towards . The solution to
the right of the interface, for , consists of an exponen-
tially decaying evanescent wave.

VI. CONCLUSION

A. Implementation

It is feasible to make the 2-D LC lattice on a semiconductor
substrate. Here we assume a Silicon substrate that is popular in
today’s technologies. We use pieces of metal as our inductors
and metal-to-metal capacitances as the capacitors.

From the lattice dispersion relation (4), we know that in
order to maximize the cutoff frequency, we need to minimize
the values of inductors and capacitors in each section. How-
ever, we cannot arbitrarily shrink the capacitances of each

Fig. 15. Total internal reflection. At , voltage forcing is switched on
along the left boundary at nodes ; resulting waves propagate at a
sharp angle towards the interface at , where they undergo total internal
reflection and are sent back towards the boundary at . The waves bounce
repeatedly off the effective boundaries at and as they propagate
upwards towards . The lattice delay equals for and equals

for .

section, because at some point, parasitic capacitance becomes
comparable with our lumped capacitance. In today’s typical
Silicon processes, we can have inductances as low as 30 pH and
capacitances as small as 5 fF before parasitic factors become an
issue. The quality factor for these elements is around 20, giving
us a cutoff frequency of around 300 GHz.

One important issue is ohmic loss of the Silicon substrate. To
address this problem, we need to use a ground plane beneath our
inductors to shield the Silicon substrate. By adding this layer, it
is possible to achieve higher quality factors in our inductors. To
find the exact value of inductance and capacitance as well as
loss in each section, we use an E/M simulator such as Ansoft
HFSS [16].

Another potential issue for this structure is magnetic cou-
pling of the inductors. Adjacent inductors induce current in each
other; to model this accurately requires additional terms in our
circuit model (2). With typical values of inductors and capac-
itors, the effect of mutual inductance is very small: a careful
E/M simulation shows that the coupling coefficient of adjacent
inductors is less than 0.1.

Using the exact circuit models, we have simulated this struc-
ture and are in the process of fabricating the Fourier transform
circuit in a SiGe BiCMOS process.

B. Conclusion and Future Directions

Numerical simulations indicate that 2-D LC lattices can
be used to refract and diffract incoming waves of voltage.
For waves with wavelength sufficiently large that only a few
wavelengths are able to fit into a finite lattice, the lattice acts
as a thin-slit diffraction aperture. By combining the lensing
(refractive) and diffractive effects, we have demonstrated how
a 2-D LC lattice can be used as a Fourier transform device.

These numerical findings were matched by our mathemat-
ical analysis of the refraction and diffraction problems for 2-D
waves. In the case of diffraction, we found that a thin-slit aper-
ture yields a phase-shifted Fourier transform, by way of the
Huygens–Fresnel integral (15). Canceling out this phase shift
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using a lens is precisely what the circuit shown in Fig. 6(a) is
designed to do.

Simulations indicate that even in the presence of loss, mutual
inductance, and capacitor/inductor variations, a 2-D LC lattice
still manages to obtain discrete Fourier coefficients from the
input signal. Furthermore, these Fourier coefficients match the
true Fourier transform quite well.

The lattice erases the delay of digital gates, but not of sam-
pling speed. Sampling is still required to read the output signal
and pick up the Fourier coefficients. This and other implemen-
tation issues are currently being investigated. In future work, we
hope to report measurement and test data for a Fourier transform
device based on a 2-D LC lattice, fabricated on chip.
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