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Electrical Prism: A High Quality Factor Filter for
Millimeter-Wave and Terahertz Frequencies
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Abstract—A 2-D electrical filter is introduced that is compatible
with today’s conventional integrated circuit processes. The rich
2-D propagation properties of the medium are used to introduce
a novel high quality factor filter called an electrical prism. The pro-
posed filter shows a quality factor much larger than the quality
factor of the individual components at high millimeter-wave and
terahertz frequencies. This structure also provides a negative ef-
fective index in a low-pass lattice. Based on this idea, we show
filters with quality factors of 130 at 230 GHz and 420 at 460 GHz
consisting of elements with the quality factor of 10 and 20, respec-
tively. The effect of component loss on the filter quality factor is
discussed in this paper. The negative effective index and the filter
behavior of the lattice is verified by measuring a prototype on a
CMOS process at 32–40 GHz. There is good agreement among the
theory, simulation, and experimental results.

Index Terms—CMOS, dispersion, electrical prism, high quality
factor filter, negative effective index, spatial filtering, terahertz, 2-D
electrical lattice.

I. INTRODUCTION

T HE TERAHERTZ frequency range is usually defined to
be from 100 GHz to 10 THz. Bio-spectroscopy and molec-

ular spectroscopy were the first and the main applications for
the terahertz region [1]. Recently, this range has also been used
for imaging, compact range radars, and remote sensing [2]–[5].
Traditionally, the solid-state version of all these systems, along
with the terahertz sources, have been built using III–V-based
HBT/HEMT technologies like GaAs [2]. As the CMOS tech-
nology scales down, the of the transistors are reaching the
lower part of the terahertz range: the 65-nm CMOS technology
already has an of around 200 GHz [6]. The CMOS scaling
along with the III–V technology drawbacks such as cost and ef-
ficiency paved the way for the recent terahertz work in silicon
processes [7], [8].

The 2-D electrical lattices are 2-D discrete lattices in which
the building block is constructed using passive elements. Fig. 1
is an example of a 2-D lattice. Each line represents an inductor,
and each dot represents a capacitor to ground. This specific lat-
tice is a low-pass lattice, but other lattices with different fre-
quency responses can be constructed. The 2-D electrical lattices

Manuscript received March 18, 2009; revised June 01, 2009. First published
October 06, 2009; current version published November 11, 2009. This work was
supported in part by the National Science Foundation under NSF Grant DMS-
0713732 and by the Defense Advanced Research Projects Agency (DARPA)
under a 2007 DARPA Young Faculty Award.

The authors are with the Department of Electrical and Computer Engi-
neering, Cornell University, Ithaca, NY 14853 USA (e-mail: om53@cor-
nell.edu; ehsan@ece.cornell.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2009.2032343

Fig. 1. Rectangular lattice.

on silicon have a potential in terahertz signal generation and pro-
cessing due to their distributed nature and their scalability for
higher frequencies. Several studies have shown that this class
of circuits is promising for high frequencies. In terms of signal
generation, [9] illustrates the highest output power for a power
amplifier for the wide band of 60–100 GHz using a 2-D elec-
trical lattice. It is also shown in [10] that by using a well-sized
nonlinear 2-D lattice, one is able to generate an output signal
frequency five to six times greater than the input signal fre-
quency. Due to the distributed nature of this lattice, the power of
the input signals will add together to generate the output signal
that has more power than each input. In terms of signal pro-
cessing, [11] shows that using low-pass 2-D lattices it is possible
to make an ultra-fast Fourier transformer for terahertz frequen-
cies. Furthermore, [12] and [13] demonstrate compact electrical
lens in high-pass and anisotropic 2-D electrical lattices, and [14]
illustrates a 2-D frequency-scanned leaky-wave antenna using
the same kind of 2-D lattices. Electrical lattices of this class
are known as metamaterials. Interesting phenomena such as the
negative refractive index is observed in metamaterials at wave-
lengths much larger than its unit cell dimensions [15], [16].

In all of the terahertz systems, high quality factor filters are
the essential part of the operation. Furthermore, the solid-state
terahertz sources use nonlinear elements for up/down con-
version and multiplication to generate power. To suppress
harmonics generated and to get a clean spectrum, a high quality
factor filters are required. In terahertz spectroscopy, in order
to find the output spectrum, a high quality factor filter bank is
used. Typically, this has been done off-chip by mixing down
the signal and using the filter bank at low frequencies. In order
to eliminate the mixer and make a silicon-based spectrometer,
a high quality factor filter at terahertz frequencies is desirable.
It can be shown that the quality factor of the conventional
passive filters are limited to the quality factor of the individual
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components [17], which is low at high frequencies due to ohmic
and substrate loss in silicon processes [18].

In optics, high quality factor filters and demultiplexers have
been realized using photonic crystals [19], [20]. By engineering
the crystal’s frequency bandgap, different frequencies will prop-
agate in different directions in the crystal. This spatial filter is
called a superprism. The light propagation in this kind of pho-
tonic crystal is very similar to that in diffraction grating [21].
In other words, the dispersion that causes the superprism ef-
fect originates from scattering (e.g., diffraction grating). In this
paper, we introduce a spatial filtering method (electrical prism)
using a low-pass 2-D electrical lattice. The operation of this
filter relies on the dispersion in the 2-D electrical lattices. Un-
like superprism, dispersion in the homogeneous 2-D electrical
lattice originates from the discreteness of the lattice rather than
the scattering [22]. Due to this dispersion, the direction of the
energy flow is a function of signal frequency at frequencies close
to the cutoff frequency. The main specifications of the proposed
filter are as follows.

• The negative effective index is observed in this electrical
prism.

• Unlike metamaterials, these interesting features are hap-
pening close to the cutoff frequency, which helps to
channel the signal from input to output.

• The quality factor of the filter is much larger than the
quality factor of each individual component in the lattice,
solving one of the major challenges of the above-men-
tioned high-frequency filter design.

• The operating frequency of this filter can be as high as the
cutoff frequency of a 2-D electrical lattice, which can reach
1.4 THz in a conventional CMOS process.

The remainder of this paper is organized as follows. In
Section II, the general theory of plane-wave propagation in a
low-pass 2-D lattice will be discussed, The direction of the
energy will be derived for rectangular and triangular lattices.
In Section III, we will show how to build an electrical prism
using 2-D lattices; filter quality factor discussion, theory, and
simulation plots will be provided for a lossless structure. The
effect of component loss on the quality factor of the filter
will be discussed in Section IV. In Section V, the design,
simulation, and the measurement result of the electrical prism
prototype will be presented. We will then summarize the paper
in Section VI.

II. PLANE-WAVE PROPAGATION IN 2-D LATTICES

A. Rectangular Lattice

Fig. 1 shows a top view of a 2-D rectangular lattice. The lines
represent inductors with value , and the dots are the nodes that
are connected to ground with capacitors with value . The dot
distances are and in the - and -directions, respectively.
Coordinate vectors for the nodes and and the position
vector are defined as follows:

(1a)

(1b)

(1c)

Fig. 2. Brillouin zones in reciprocal lattice for the rectangular lattice.

For the above lattice, and are integer numbers. For a plane
wave, the voltage at each node is of the form

(2)

in which is the wave vector and is the angular frequency of
the signal. The wave vector directly relates to wavelength , and
in 2-D, it can be defined as

(3a)

(3b)

After substituting (1) and (3) in (2), we arrive at the equation

(4)

where and are the phase shifts per section in the - and
-directions, respectively. The values of and can be given

by

(5a)

(5b)

Using the above information, we can find the reciprocal lat-
tice for a rectangular lattice. The reciprocal lattice is an imag-
inary lattice in the wave-vector space [23]. All of the points in
the first Brillouin zone in the reciprocal lattice represent unique

vectors. For any point in the second Brillouin zone, there is a
corresponding point in the first Brillouin zone that represents the
same plane wave. In order to analyze the lattice, it is beneficial
to find the reciprocal lattice introduced in [24]. It can be easily
shown that the coordinate vectors for the reciprocal lattice are

(6a)

(6b)

Fig. 2 shows the reciprocal lattice along with the first two Bril-
louin zones for the rectangular lattice. It is apparent from Fig. 2
that, in the first Brillouin zone, and have the maximum
values of and , respectively. We can find the max-
imum values for and by

(7a)

(7b)
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Fig. 3. Rectangular lattice cell.

Fig. 4. Equi-frequency diagram for a rectangular lattice.

To find the direction of the energy in the lattice, the dispersion
relation of the lattice needs to be calculated. To do so, we need
to first find the differential equation for the lattice cell. Fig. 3
shows the unit cell for the rectangular lattice. By applying KVL
and KCL to the unit cell, we have

(8)

Now, if a plane-wave voltage of the form (4) is assumed for the
node voltages in (8), it can be shown that the dispersion relation
is

(9)

Relation (9) shows the nonlinear relationship between the wave
vector and the frequency. This fundamentally comes from the
discrete nature of the lattice. In electrical lattices usually one
of the or is defined by the boundary conditions. Fig. 4 is
the plot of versus for different frequencies. This graph is
known as the equi-frequency diagram. The top right dot in the
graph corresponds to the cutoff frequency of the lattice, which
is achieved when and reach their maximum value

(10)

Fig. 5. Triangular lattice.

In a 2-D lattice, the cutoff frequency is a function of the direction
of the wave vector. The cutoff frequency in (10) is the highest
frequency that can propagate in the lattice, and at the cutoff fre-
quency if . In today’s CMOS processes, if
we use transmission lines as inductors and metal-to-metal ca-
pacitance as capacitors, and values can be as low as 20 pH
and 5 fF. This will result in a cutoff frequency of 1.4 THz. Below
these values, the inductance and capacitance will be dominated
by the parasitics.

In a lossless lattice, the energy flow direction is the same as
the direction of the group velocity. Using (9), group velocity can
be shown to be

(11)

From (11), the direction of the energy is easily found to be

Energy Direction (12)

If , by definition the group velocity direction is the di-
rection of the perpendicular line to the equi-frequency curves
in Fig. 4. For low frequencies, and are small, and the
equi-frequency curves are close to a circle. Therefore, the en-
ergy direction is approximately equal to the wave vector di-
rection (e.g., phase velocity direction). The energy direction is
specified for two points in Fig. 4.

It can also be concluded from Fig. 4 that if and are
positive—in other words, if has a positive phase between 0 and

—the group velocity also would have a phase between
0 and . This is the reason that the rectangular lattice has a
positive effective index over all of the frequencies. Any positive
incident angle results in a positive transmission angle in this
lattice.

B. Triangular Lattice

Fig. 5 shows a right isosceles triangular lattice that is a 45
rotation of a square lattice. A square lattice is a rectangular lat-
tice in which . In Fig. 5, and are the basis vectors
and and are the node distances in the - and -directions,
respectively. Due to the symmetry in this lattice, . For
this triangular lattice, we can use exactly the same analysis as
in Section II-A. The only difference is that, in (1c), and
are not integers anymore. To be able to point to all of the nodes
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Fig. 6. Brillion zones in reciprocal lattice for the triangular lattice.

with the specified basis vectors, we need to define and as
follows:

(13a)

both odd or even (13b)

Having the lattice set up, we can construct the reciprocal lat-
tice for the triangular lattice. Fig. 6 shows this reciprocal lattice
and the Brillouin zones in the lattice. In the first Brillouin zone,
the maximum values for and are and , respec-
tively. Using (5), we can find the maximum values for and

in the first Brillouin zone

(14a)

(14b)

Using the triangular lattice cell in Fig. 7 and (4) for a plane
wave, the dispersion relation for a triangular lattice can be
derived as

(15)

The cutoff frequency is the same as (10), but when we rotated
the lattice by 45 , , or instead of in a square
lattice at the cutoff frequency. Having (15), we can plot the equi-
frequency diagram in Fig. 8. In this case, there are two solutions
for and for each frequency. The curves start from

at the upper right and lower left of the graph and end
at the points corresponding to at the lower right and
upper left of the graph.

Using (15) and (11), the energy direction in this triangular
lattice can be found to be

(16)

Fig. 7. Triangular lattice cell.

Fig. 8. Equi-frequency diagram for a triangular lattice.

In Fig. 8, the energy direction is specified in two points. For
point A, the wave-vector phase is between 0 and as the
energy direction. Therefore, at point A, the lattice has a positive
effective index. This is true as long as and are less than ,
but as soon as one of them exceeds , then for positive ,
will be negative. This implies a negative effective index for the
lattice. Point B is the example of an operating point in which the
lattice has a negative effective index.

III. ELECTRICAL PRISM

A. Rectangular Lattice Triangular Lattice

The electrical prism can be made by connecting a rectangular
lattice and a triangular lattice together. Fig. 9 shows the prism
in which the rectangular and triangular lattices have a 45 inter-
face. Different interface angles other than 45 can also be visu-
alized, but in implementation they are either too complicated or
just too big for on-chip realization. In Fig. 9, the blue lattice (in
the online version) is a rectangular lattice and the red lattice (in
the online version) is a triangular lattice that is rotated by 45 .

and are the inductor and capacitor for the rectangular
lattice, and and are the inductor and capacitor for the tri-
angular lattice. The plane wave is flowing from left to right in
the rectangular lattice and has an incident angle of 45 at the
interface. The choice of this incident angle eliminates the use of
wideband phase shifters at the boundary and leads to a simpler
realization. In Fig. 9, and are the phase shift per section
in the rectangular lattice in the - and -directions, respectively,
while is the phase shift per section along the interface and
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Fig. 9. Electrical prism using a rectangular and a triangular lattice.

is the phase shift per section perpendicular to the interface in the
triangular lattice. In both lattices, we assume .

Since , it is clear from Fig. 9 that . To find the
transmission angle, we need to first find . From (9), can be
found to be

(17)

where is the phase shift per section along the -direction in
the rectangular lattice. Since the traveling signal is a plane wave,

is also the phase shift between the consecutive nodes at the
lattice interface. In the triangular lattice, is the phase shift per
section along the interface, and therefore, . Now, using
(15) and (17), we can find to be

(18)

Equations (17) and (18) describe and as a function of lat-
tice components and the signal frequency. In (16), and
can be substituted by and , respectively, to find the trans-
mission angle . Fig. 10 shows the plot of versus signal fre-
quency for different . In order to minimize
the reflection from the interface, the characteristic impedance
of both the lattices should be equal. It is not trivial to calcu-
late the characteristic impedance of a 2-D lattice, especially
for frequencies close to the cutoff frequency. The characteristic
impedance is a function of the plane-wave propagation direc-
tion, and it is also a function of the signal frequency if it is
close to the cutoff frequency. For a rectangular lattice, if the
propagation direction is along the or axis, the characteristic
impedance is for low-signal frequencies. The charac-
teristic impedance of both lattices is kept constant at 50 , and
hence, . In Fig. 10, is
the cutoff frequency of the triangular lattice. As was mentioned
in Section II, in today’s CMOS processes, this cutoff frequency
can be as high as 1.4 GHz. That is the main reason why this filter
can operate at terahertz frequencies.

Fig. 10 shows that for a specific factor, as the frequency
increases, and the derivative of the line gets more negative.
This suggests that the separation of the frequencies increases
at higher frequencies. More frequency separation can also be

Fig. 10. Theoretical plot of frequency versus transmission angle for Fig. 9.

Fig. 11. MATLAB circuit simulation for a lossless lattice.

observed for the lower factor as the line becomes steeper for
those curves. If the output of the filter is fixed to a point on
the triangular lattice, more frequency separation translates into
a higher quality factor for the filter. The frequency point that
all the curves intersect is the cutoff frequency of the triangular
lattice when the signal is traveling in the - or -direction in
Fig. 10. This can be seen in the trivial case of as the
signal stops propagating at the same frequency. The negative
effective index is also observed since the incident angle is 45
and the transmission angle is negative. For low frequencies, the
transmission angle reaches a constant number, which is the exact
angle that we can find from Snell’s law

(19)

This validates the fact that, at low frequencies, refraction is the
dominant effect in the energy direction, but as frequency grows,
the wavelength becomes comparable to the lattice’s dimension
and dispersion plays the dominant role in the energy direction.

To validate this theory, a MATLAB code is used to solve for the
differential equations in the lossless lattice and simulate the
exact circuit. Ten equi-phase sources are applied to the left
side of the rectangular lattice to create a plane wave and the two
lattices combined have 60 80 sections. A large lattice is used
to better illustrate the direction of the energy. Fig. 11 shows the
profile of the signal as it propagates through both lattices, with
the red color (in the online version) the highest and blue color (in
the online version) the lowest amplitude. The signal frequency
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Fig. 12. Filter simulation using Cadence ( and section
).

is 230 GHz and the factor is 2 in this figure. The character-
istic impedance of both lattices is 50 and the cutoff frequency
of the triangular lattice is assumed to be 300 GHz. Therefore,

and can be calculated to be 75 pH and 30 fF. The prop-
agation direction in Fig. 11 is defined to be the direction that
the maximum amplitude is traveling. The simulated is 19
and the theoretical from Fig. 10 is 20 . The direction of
the energy was also simulated for some other frequencies, and
they are either exactly the same or just 1 away from the theo-
retical value. The 1 difference can be explained by the trans-
mission angle measurement error in the simulation. Fig. 11 also
shows the channeling property of the lattice. It can be observed
that because the frequency is close to the cutoff frequency, the
signal is not propagating all over the lattice and channels to a
specific direction. Intuitively, because the cutoff frequency is a
function of energy direction, the signal dies out faster at direc-
tions other than the propagation direction in high frequencies.
This has a significant effect on the quality factor of the filter.
If the frequency was much lower than the cutoff frequency, as
soon as the wave hits the interface, all of the nodes would act as
point sources and a considerable amount of energy would spread
out to most of the output nodes. The width of the signal ray is
defined as the extent that the amplitude drops 3 dB from the
maximum amplitude. In Fig. 11, because the lattice is lossless
and the frequency is close to the cutoff, the width of the signal
ray remains almost constant from the interface to the output. In
Section IV-B, we will investigate the effect of loss on the width
of the signal ray.

To find out the quality factor of the filter, the same lattice was
constructed in Cadence. The section quality factor is chosen
to be the typical on chip value of 10 at 230 GHz and the
factor is 1.2. The outputs of the filter are four fixed points at the
boundary of the triangular lattice. Fig. 12 shows the normalized
gain from input to output for different output nodes. The filter
quality factor of 130 is achievable, which is much higher than
the component quality factor of 10. This is not possible using
classical filter design methods. For a given section quality
factor , the quality factor of the filter will be a function of
the size of the lattice—the larger the size, the greater the fre-
quency separation, and hence, the better the filter quality factor.
Of course, the larger the size, the higher the insertion loss would
be. Fortunately, the size of the lattice is scaled down as the fre-
quency of the operation goes up. This is because the inductor

Fig. 13. Electrical prism using two rectangular lattices.

value decreases to support the higher frequency, and hence, re-
duces the size of the inductor and the overall lattice. This type
of lattice is a strong candidate for high-frequency filtering as the

of the components and the size of the lattice decreases.

B. Rectangular Lattice Rectangular Lattice

The electrical prism can also be implemented by connecting
two rectangular lattices together. Fig. 13 shows such a prism
with the two rectangular lattices having a 45 interface. The the-
oretical analyses are exactly like the one in Section III-A. The
major difference is that, in this kind of filter, there will be no neg-
ative effective index as two rectangular lattices are being used.
Thus, at low frequencies, there will be a constant positive ,
and as the frequency increases, and the slope of the curve will
be more positive. Therefore, the filtering and channeling prop-
erties still exist, but with a positive transmission angle. There
will be two drawbacks for this filter compared with the one in
Section III-A. First, the negative is not present in the filter
operation, and hence, the span of transmission angle over the
frequency range is less than the one in Section III-A; this leads
to a lower for this filter. Second, with respect to a terahertz
on-chip implementation, the filter in Section III-A is simpler to
implement because the inductors in both lattices are in the same
direction and there is no 45 angle in the layout.

IV. EFFECT OF COMPONENT LOSS IN THE ELECTRICAL PRISM

In order to study the effect of the component loss on the filter
quality factor, we should examine its effect on two important
features in the electrical prism—the direction of the energy and
the channeling effect in the presence of loss.

A. Effect of Component Loss on the Direction of Energy

To find the effect of loss on the direction of the energy, we
first need to find the dispersion relation of the lattice. Fig. 14
shows the lossy triangular lattice cell. and are the inductor
and capacitor values for each section, and and are the
resistors in parallel with the inductor and capacitor, respectively.
By changing and , we can control the quality factor of the
inductor and capacitor independently. Using the same analysis
as in Section III, we can find the dispersion relation for the lossy
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Fig. 14. Lossy triangular lattice cell.

Fig. 15. Equi-frequency diagram of lossy (red in online version) versus lossless
(blue in online version) triangular lattice.

triangular lattice. The only difference is that the voltage at each
node is of the form

(20)

where and are the attenuation constants in the - and -di-
rections, respectively, because in the triangular lattice, we are
using the same inductor everywhere in the lattice, .
Using (20), we can find the dispersion relation for a lossy trian-
gular lattice in (21), shown at the bottom of this page. It can
be easily verified in the lossless case where and go to
infinity, vanishes and the relation in (21) will be the same as
the one in (15). Having (21), we can plot the equi-frequency dia-
gram and compare it with that of a lossless lattice. Fig. 15 shows

the equi-frequency diagram for a lossy lattice in red (in the on-
line version) and the one for a lossless lattice in blue (in the
online version). To plot the curves for a lossy lattice in Fig. 15,
the same 300-GHz cutoff frequency is assumed. and are
also 75 pH and 30 fF considering the characteristic impedance
of 50 . The quality factors of the inductors, , and the ca-
pacitors, , are chosen to be the typical on chip values of 10
and 100, respectively. This means that and are changing
for each frequency to maintain these chosen values for and

. Since is much smaller than , the section quality
factor is approximately the same as . Although we
have chosen the cutoff frequency in (10) to be 300 GHz, the ac-
tual cutoff frequency of the lossy lattice is more than the lossless
one. This can be viewed in Fig. 15 because the red curve (in the
online version) for is not a single point anymore. The
cutoff frequency in (10) is calculated assuming a lossless lattice.
The new cutoff frequency for the lossy lattice can be calculated
by substituting and in (21).

As was discussed before, the direction of the energy is the
direction of the line perpendicular to the curves in the equi-fre-
quency diagram. For most of the curves in Fig. 15, the red curve
(in the online version) and the blue curve (in the online ver-
sion) are very similar and close to each other. As the loss is
added to the lattice, the curves are slightly shifted to where the
lower-frequency curves used to be in the lossless lattice. As a
result, the direction of the energy will not change significantly
for most of the frequencies. However, the points close to the
center of Fig. 15 may see a significant change in the direction
of the energy as the loss is added to the lattice. These points
are close to the curve representing GHz.
This frequency is the cutoff frequency of the triangular lattice if

. Now, if we look at Figs. 10 and 12, we can see that
all of the frequencies in which the filter has a high quality factor
are larger than 210 GHz. Thus, in conclusion, the direction of
the energy for the frequencies of interest would not significantly
change as the loss is added to the lattice. Simulation results also
verify this fact.

B. Effect of Component Loss on the Channeling Effect

It is complicated to theoretically analyze the effect of com-
ponent loss on the channeling effect. In order to get a sense
of what happens to the width of the signal ray in the presence
of loss, the filter was simulated with two different section
quality factors. The quality factor of the capacitors kept high
in order for the to be dominant. By comparing the signal
profile at the boundary, we can see how wide the signal ray be-
comes as the component loss changes. In this simulation, signal

(21)
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Fig. 16. Normalized voltage amplitude versus different output nodes for in-
ductor quality factors of 10 and 100.

Fig. 17. Filter quality factor versus component quality factor.

frequency is 230 GHz and the factor is 1.2. As before, and
are 75 pH and 30 fF. The result of this simulation in Fig. 16

is the plot of normalized voltage amplitudes for different out-
puts at the boundary. The narrower this voltage profile is, the
more channeled is the signal ray. It is clearly shown that for the
higher component quality factor, the signal profile is narrower,
and hence, more channeling is acquired. The narrower the signal
ray, the higher the filter quality factor is achievable.

C. Filter Quality Factor Versus Component Quality Factor

Fig. 17 shows the filter quality factor versus the section
quality factor for different frequency bands. The ratio of
product in two lattices, , is kept constant at 1.2 for all four
frequencies. As before, and are 75 pH and 30 fF for the
230 GHz. For the frequencies 460, 115, and 57 GHz, and
are multiplied by half, two and four, respectively. To have a fair
comparison, the physical size of the lattice is kept constant for
all three frequencies. This means that the number of sections is
reduced for lower frequencies to keep the same die size. We used
95 35 sections for 460 GHz, 60 30 sections for 230 GHz,
38 25 sections for 115 GHz, and 25 20 sections for 57 GHz.
As a result, for a constant quality factor, the filter quality
factor drops as the frequency drops. It is apparent from Fig. 17
that for a constant frequency, the filter quality factor decreases

as the component quality factor drops. This is expected because
the channeling effect decreases as the component loss increases.
This simulation shows that it is possible to get a quality factor
of 420 at 460 GHz with a section quality factor of 20. The
460-GHz curve is not plotted for the section quality factor
less than 15. The reason is that due to the large section number in
this frequency (95 sections), for component quality factors less
than 15, the loss is so high that the filter is not working prop-
erly. If we want to design a filter at 460 GHz with a component
quality factor of less than 15, we should use a smaller lattice
size. The following two important points can be derived from
Fig. 17.

• For a constant die size, higher frequency filters will result
in higher quality factors for the filters.

• We will achieve a higher quality factor boost ratio (the ratio
of filter over component ), for the component quality
factor of less than 20.

V. ELECTRICAL PRISM IMPLEMENTATION

A 0.13- m CMOS process with seven metal layers was
chosen to implement the electrical prism. As was discussed
earlier, for the same filter quality factor, the size of the lattice
decreases as the frequency increases. Thus, for the proof of
concept, it is reasonable to choose the highest possible fre-
quency to reduce the size as much as possible. A maximum
frequency of 50 GHz was chosen due to the availability of the
measurement tools and a relatively easier measurement setup
compared with that of higher frequencies. To have high quality
factor inductors, 100 m 100 m spiral inductors were used
for both rectangular and triangular lattices. The available die
size of 3.5 mm 2.5 mm along with the inductor size defines
the number of sections to be 18 11 for the electrical prism.
The section quality factor is limited to the inductor quality
factor in the 50-GHz range. At this frequency, the typical
quality factor value for the spiral inductors in this process is
around 20. Now, if we look at Fig. 17, for the 57-GHz curve
we will get a filter quality factor of 70 if we use an inductor
with a quality factor of 20, but for our implementation, both the
frequency and lattice size are smaller than the 57-GHz curve
in Fig. 17. Therefore, a filter quality factor of significantly less
than 70 is expected, even with , which was used in
Fig. 17. Based on Fig. 10, if a lower factor is used, a higher
filter quality factor is achievable, but an factor less than 1.2 is
not safe to use because the filter operation will be very sensitive
to process variation. From Fig. 10, we know for , useful
filtering is happening roughly between and
because our maximum measurable frequency is 50 GHz,

GHz. This will result in a triangular lattice cutoff
frequency of around 60 GHz. For a cutoff frequency of 60 GHz
and a characteristic impedance of 50 , the inductor size for
the triangular lattice will be 375 pH. In this process, the quality
factor of a 375-pH inductor is around 10 at 50 GHz. In order
to reduce the loss of the lattice, the characteristic impedance
was reduced to 30 . Now, the inductor size is 230 pH and the
quality factor is around 20. In order to probe the signals at the
input and output of the lattice, impedance-matching circuits
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Fig. 18. Die picture.

were used to match 30–50 . The implemented electrical prism
is shown in Fig. 18. A wideband one-to-eight power divider
was designed to generate the eight equi-phase sources at the
boundary of the rectangular lattice. Simulation shows that eight
signal sources are good enough to generate a plane wave in the
rectangular lattice. A 50-GHz signal source is used to apply the
input signal to the lattice through the ground–signal–ground
(GSG) pads. As previously mentioned, the inductors and capac-
itors for the triangular lattice are designed to be pH
and fF. The inductors were implemented using spiral
inductors with a quality factor of 20, and the capacitors were
realized using MOS capacitors to get a quality factor of 80
for 50-GHz frequency. The outputs are probed at the bottom
boundary of the triangular lattice through GSG pads. Five out-
puts is the maximum number we could have, given the size of
the pads. In Fig. 18, the higher-frequency signals flow to ,
and the lower-frequency signals can be probed at . The
attenuation constant for the higher-frequency signals flowing
into is higher than the one at . Therefore, to equalize
the voltage amplitudes at different outputs, the boundary was
tilted. As is shown in Fig. 17, if the number of sections in the
lattice and the component quality factor are low, having a low

factor will not improve the filter quality factor significantly.
Thus, the factor was optimized to get smooth filtering prop-
erties without sacrificing the filter quality factor. The best is
found to be 2.6. As a result, the inductors and capacitors for
the rectangular lattice will be pH and fF.
In the rectangular lattice, the vertical sections were removed to
simplify the implementation, but that will not change anything
because no signal is flowing into those sections.

Fig. 19 shows the simulation results for the five output nodes.
This result includes the effect of all the parasitic capacitors and
inductors in the layout. The graph shows the normalized gain
from input to each output versus signal frequency. To better il-
lustrate the frequency shift of the peaks, the normalized gain

Fig. 19. Gain simulation results from input to each output.

Fig. 20. Gain measurement results from input to each output.

was used. All of the peaks for the outputs are within 20% of
the highest one in due to the boundary tilting. The signal
peaks at about 34.5 and 38.5 GHz for and , respec-
tively. Fig. 19 clearly shows the filtering behavior of the lattice
and verifies the negative effective index for the lattice. The filter
quality factors vary from 8 to 12 for different outputs. This is
expected, based on the above discussion. has the highest
and has the lowest filter quality factor. The insertion loss
from each source at the boundary to each output is about 20 dB.

Fig. 20 presents the measurement results for the five output
nodes. The results are very close to the simulation results. The
peaks for different outputs are distributed over a 4-GHz span, as
was done for the simulation in Fig. 19. Similarly, the peaks for
all of the outputs are within 20% of the highest one. The filter
quality factors is also very close to simulation and changes from
8 to 12 for different outputs.

VI. CONCLUSION

Energy direction is a function of frequency in a low-pass 2-D
lattice at frequencies close to the cutoff. This property can be
exploited by implementing a high quality factor filter called an
electrical prism. A negative effective index was shown to be
achievable using this structure. Channeling of the signal and
spatial filtering are the main reasons behind the filter having a
higher quality factor than its component quality factors. Con-
sidering a fixed die size, the filter achieves higher quality factor
values for terahertz frequencies. A prototype was designed and
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measured to prove the feasibility of this approach. This struc-
ture is especially interesting because it is easy to fabricate using
a conventional CMOS process.
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