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Abstract
We study the steady-state behavior of a damped, driven nonlinear LRC

oscillator, where the nonlinearity arises due to voltage-dependent capacitance.
The driving or input signal is assumed to be a pure tone. Using an
iterative, perturbative solution technique combined with an energy conservation
argument, we show that the oscillator transfers energy from the fundamental
to higher harmonics. We determine a series expansion of the two-norm of the
steady-state output signal and show that in a large region of parameter space,
the two-norm depends superlinearly on the input amplitude. We also use the
two-norm calculation to devise a performance goal that the infinity-norm of
the steady-state output signal should satisfy, in order for the nonlinear system
to have a genuine boost over the corresponding linear system. Taken together,
these results are a step toward the automatic design of nonlinear systems that
have an optimal boost over corresponding linear systems.

PACS numbers: 05.45.Yv, 84.30.Ng, 63.20.Ry

1. Introduction

Recently, two-dimensional lattices consisting of inductors and voltage-dependent capacitors
have been proposed for high-frequency analog signal shaping applications [ABHM06, BA08,
LPL+10]. A schematic diagram for a typical lattice is shown in figure 1. The voltage
dependence of the capacitors causes nonlinear propagation of voltage/current in the lattice.
Unlike earlier studies that focused on using bulk-scale versions of these lattices to generate
solitons [OPS80, Ste81, Ste83] modern applications involve fabricating these lattices on chip
using CMOS processes, in order to generate and process microwave signals in the analog
domain. The advantage of using inductor–capacitor lattices is that they consist of passive
devices, with higher cutoff frequencies than active devices (such as transistors) on the same
process.

In order to exploit the natural dynamics of these lattices for applications, we must have a
detailed understanding of their qualitative and quantitative dynamics. In our earlier work
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Figure 1. Typical two-dimensional lattice (or network) of inductors and voltage-dependent
capacitors.

out

in

Figure 2. Damped, driven nonlinear LRC oscillator.

[BA08, LPL+10], we established that when the left and bottom boundaries of the two-
dimensional lattice shown in figure 1 are driven by constant amplitude, in-phase sinusoidal
sources, the lattice pushes energy into higher harmonics, yielding output signals with larger
peak-to-peak amplitudes and higher frequency content than the sources. One of the strategies
we used was to consider a much smaller problem, a single nonlinear LC (inductor–capacitor)
oscillator connected to a resistive load R that stands in for the rest of the lattice, as shown
in figure 2. Using numerical methods, we established that the amplitude of the steady-state
output signal depends nonlinearly on the amplitude of the driving signal. We refer to this as
amplitude boosting.

In this work, our goal is to give an analytical explanation of how nonlinearity can boost the
L2 and L∞ norms of the steady-state output of the nonlinear system, relative to the steady-state
output of the corresponding linear system. In section 2, we derive a perturbative steady-state
solution in the case where the driving function consists of a pure tone, i.e. a trigonometric
function with fixed amplitude oscillating at a single frequency. What we find is that the
natural behavior of the oscillator is to push energy from the fundamental frequency into
higher harmonics. Next, we use the steady-state solution together with an energy conservation
argument to relate the L2 norm of the output signal Vout(t) to the amplitude of a pure tone input
signal Vin(t), and to thereby derive a lower bound on the L∞ norm of the output signal. This
is carried out in section 3.

Until this point, our derivations are general and do not depend on specific choices of the
parameters for circuit inductance, capacitance and resistance. In sections 3.3 and 3.4, we show
that for practical choices of these circuit parameters, the L2 and L∞ norms of Vout depend
nonlinearly and in fact superlinearly on the amplitude of Vin. This result helps to explain
prior numerical and experimental observations where doubling the input amplitude caused the
output amplitude to increase by more than a factor of 2.

It would be impossible to survey all prior studies on damped, driven nonlinear oscillators.
There has been a tremendous amount of work in this area, much of which has been
comprehensively surveyed elsewhere [NM79, VMM+96]. Unlike the work on, for example,
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the damped, driven Duffing oscillator, the purpose of our work is not to demonstrate chaos.
Many nonlinear chaotic circuits have been discussed in the literature, including a circuit known
as the series nonlinear LRC oscillator, with all three components arranged in series, unlike
ours. In the parameter regimes we consider, and in a neighborhood of the initial conditions
(V (0), V̇ (0)) = (0, 0), the equations under study do not display sensitive dependence on
initial conditions [BA08]. We make further remarks on the difference between our nonlinear
oscillator equation and more standard nonlinear oscillator equations in section 2.

2. Steady-state solution

Consider the circuit shown in figure 2. Let V (t) = Vout(t), and let Q(t) denote the charge
stored in the capacitor at time t. Using Kirchhoff’s laws of voltage and current, we write the
following equations:

L
dI

dt
= Vin(t) − V, (1a)

dQ

dt
= I − V

R
. (1b)

The charge is related to the voltage via

Q(V ) =
∫ V

0
C(v) dv, (2)

which implies that (1b) is equivalent to

dQ

dt
= C(V )

dV

dt
= I − V

R
. (3)

Differentiating (3) with respect to t and using (1a), we obtain

d

dt

[
C(V )

dV

dt

]
+

1

R

dV

dt
+

1

L
V = 1

L
Vin(t). (4)

We make the following assumptions.

• R and L are positive constants.
• C(V ) is weakly dependent on V, i.e.

C(v) = C0 + εC1v, (5)

where C0 and C1 are constants and ε < 1.
• The input function is a trigonometric function oscillating at one, fixed frequency.

At this point, it is important to understand that with the specific form of C(v) considered
here, the second-order equation (4) becomes

C0
d2V

dt2
+ εC1

(
dV

dt

)2

+ εC1V
d2V

dt2
+

1

R

dV

dt
+

1

L
V = 1

L
Vin(t). (6)

Writing out all the terms allows us to compare our approach with another approach that is more
commonly used [BW06, BW07], which is to write a second-order equation for the charge Q.
To do this, we note that (5) and (2) imply Q(V ) = C0V + εC1V

2/2, so

V = 1

C0
Q − ε

C1

2C3
0

Q2 + O(ε2).
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Then differentiating (1b) with respect to t yields

d2Q

dt2
= dI

dt
− 1

R

dV

dt
(7)

= 1

L
Vin(t) − 1

L
V − 1

R

dV

dt
(8)

= 1

L
Vin(t) − 1

LC0
Q + ε

C1

2LC3
0

Q2 − 1

RC0

dQ

dt
+ ε

C1

RC3
0

Q
dQ

dt
+ O(ε2). (9)

Dropping the O(ε2) remainder term and assembling the non-forcing terms on the left-hand
side, we obtain the second-order equation

d2Q

dt2
+

1

RC0

dQ

dt
− ε

C1

RC3
0

Q
dQ

dt
+

1

LC0
Q − ε

C1

2LC3
0

Q2 = 1

L
Vin(t). (10)

In the context of nonlinear oscillation theory, the form of (10) is more similar to equations
discussed previously [NM79, Hay85, VMM+96], where the highest order derivative appears
linearly (and not nonlinearly) in the equation, unlike in (6). In fact, the free oscillations of
(10), with Vin(t) ≡ 0, have been analyzed in recent work on quadratic nonlinear oscillators
[Mic04, Hu06].

It is important to keep in mind that O(ε2) terms were dropped when passing from (1) to
(10). Our derivation and results do not involve dropping any terms, and we will be interested
in analyzing the perturbative solutions of (6) at all orders of ε. Even if full solutions to the
damped, driven nonlinear oscillator equation (10) are available at all orders of ε, we have no
reason to expect these solutions to agree with solutions of (6) beyond the first order of ε.

We return to the analysis of (4). Under the assumptions made above, we wish to show
that (i) the effect of nonlinearity is to excite higher harmonics, and that (ii) nonlinearity does
not cause a shift in the oscillation frequency—the period of the output signal V (t) equals the
period of the input signal Vin(t). We start by writing

V (t) ∼
∞∑

k=0

εkwk(t). (11)

Substituting this into (4), using the Cauchy product of infinite series, and separating out the
k = 0 equation lead to the sequence of problems

k = 0: Lw0(t) = 1

L
Vin(t), (12)

k � 1: Lwk(t) = −C1
d

dt

k−1∑
n=0

wn(t)
d

dt
wk−1−n(t), (13)

where L is the operator

L = C0
d2

dt2
+

1

R

d

dt
+

1

L
.

In the previous work [BA08], we analyzed (4) with the input function

Vin(t) = A sin 2πωt (14)

using a very concrete version of the above approach—we explicitly calculated the four terms
w0, w1, w2 and w3. Also in the previous work [LPL+10], we found the frequency response of
the system by taking the Fourier transform of (4) and then using a perturbative expansion in
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the frequency domain. The results included a sequence of equations involving convolutions
similar to that appearing on the right-hand side of (13).

We proceed with a few lemmas that will lead us to understand amplitude boosting in
section 3. In what follows, we use f̂ (ν) to denote the Fourier transform of f (t):

f̂ (ν) =
∫ ∞

−∞
f (t) e−2π iνt dt. (15)

Then the inverse Fourier transform is written as

f (t) =
∫ ∞

−∞
f̂ (ν) e2π iνt dν. (16)

We shall also use

F(s) :=
∫ ∞

t=0
e−stF (t) dt

to denote the Laplace transform of F(t)—in other words, if we write a function of s, it is
understood that this is the Laplace transform of the corresponding function of t.

Lemma 1 simply records the steady-state solution of a damped, driven linear oscillator,
regardless of the initial condition. In what follows, we use H(t) to denote the Heaviside step
function.

Lemma 1. Suppose we have an input function Vin(t) = ∑M
m=1 βm e2π iαmt , where αm ∈ R and

βm ∈ C. Then, for any initial conditions (V (0), V̇ (0)), the steady-state solution of the linear
system

LV (t) = L−1Vin(t)H(t) (17)

is given by

Vsteady(t) =
M∑

m=1

e2π iαmt βmL−1

C0(2π iαm)2 + R−1(2π iαm) + L−1
. (18)

Proof. Consider the initial-value problem where V (0) and V̇ (0) are given, and where it is
assumed that V (t) = V (t)H(t), or in other words, V (t) ≡ 0 for t < 0. Applying the Laplace
transform to both sides of the linear system, we find that

V (s) = L−1Vin(s)

C0s2 + R−1s + L−1︸ ︷︷ ︸
VS (s)

+
C0(sV (0) + V̇ (0)) + R−1V (0)

C0s2 + R−1s + L−1︸ ︷︷ ︸
VT (s)

.

The term VT (s) is of the form P(s)/Q(s) where the degree of the polynomial P is strictly less
than the degree of the polynomial Q. Moreover, the roots of Q(s) = C0s

2 + R−1s + L−1 are
located at

s± = − 1
2R−1C−1

0 ±
√

1
4R−2C−2

0 − L−1C−1
0 .

Since R, C0, and L are always positive, both roots of Q(s) always have strictly negative real
part. Trivially, lims→0[sVT (s)] = 0, and since the hypotheses of the final value theorem are
satisfied, we know that limt→∞ VT (t) = 0—this holds regardless of the initial conditions V (0)

and V̇ (0). Since VT decays to zero for large t, we focus our attention on VS . We first write

Vin(s) =
M∑

m=1

βm

s − 2π iαm

.
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Hence,

VS(s) =
M∑

m=1

βmL−1

(s − 2π iαm)(C0s2 + R−1s + L−1)
.

Inverting the Laplace transform on the right-hand side is simple. At the end of this derivation,
we will treat the case where Q(s) has a double root at s∗ = −(1/2)R−1C−1

0 ; for now, assume
that s+ �= s−. Then taking the inverse Laplace transform yields

VS(t) =
M∑

m=1

e2π iαmt βmL−1

C0(2π iαm)2 + R−1(2π iαm) + L−1

+
M∑

m=1

es+t βmL−1

(s+ − 2π iαm)(s+ − s−)C0
+

M∑
m=1

es−t βmL−1

(s− − 2π iαm)(s− − s+)C0
. (19)

Since the real parts of s± are strictly negative, the terms involving es±t decay to zero as t → ∞.
Therefore, we have proven

lim
t→∞ |V (t) − Vsteady(t)| = 0, (20)

as desired.
If R = (1/2)

√
L/C0, then the polynomial Q(s) has a double root at s∗ = −(1/2)R−1C−1

0 .
In this case, instead of (19), the inverse Laplace transform of VS(s) will give

VS(t) =
M∑

m=1

e2π iαmt βmL−1

C0(2π iαm)2 + R−1(2π iαm) + L−1
+

L−1

2C0

M∑
m=1

d

ds

∣∣∣∣
s=s∗

βm est

s − 2π iαm

. (21)

The derivative with respect to s, evaluated at s = s∗, will yield terms of the form es∗t and t es∗t .
It is obvious that s∗ is a negative real number, so for any n � 0, limt→∞ tn es∗t = 0. Just as
before, |VS(t) − Vsteady(t)| → 0 as t → ∞. This proves (20) in the case where P(s)/Q(s)

has a double pole at s = s∗. �

Now that we have obtained the steady-state solution using the Laplace transform, let
us explain how the same result may be obtained much more expediently using the Fourier
transform. Lemma 2 shows that to find the steady-state response of the system, it is sufficient
to solve the problem with non-Heaviside right-hand side using the Fourier transform, ignoring
initial conditions.

Lemma 2. The steady-state solution of (17) is the function W(t) that one obtains by solving

LW = L−1Vin(t) (22)

using the Fourier transform.

Proof. The only difference between (22) and (17) is the absence of the Heaviside term
H(t)—in other words, we are now considering a system where the forcing term has been in
existence ‘from t = −∞ until the present,’ roughly speaking. We take the Fourier transform
of both sides of (22) and obtain

[C0(2π iω)2 + R−1(2π iω) + L−1]Ŵ (ω) = L−1
M∑

m=1

βmδ(ω − αm).

We solve for Ŵ (ω):

Ŵ (ω) = L−1
M∑

m=1

βmδ(ω − αm)

C0(2π iω)2 + R−1(2π iω) + L−1
.

6
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Now inverting the Fourier transform, which is trivial because of the Dirac δ’s on the right-hand
side, we obtain W(t) = Vsteady(t), as desired. �

Remark 1. When we solve Lf (t) = g(t), the solution f (t) contains only those Fourier
modes that were originally present in g(t). No new Fourier modes are created. This is clear
from the steady-state solutions derived in both lemmas 1 and 2.

Lemma 3 has to do with what happens in the system (12)–(13) when we start with
Vin(t) equal to a real-valued trigonometric function at a single frequency, which we call the
fundamental mode. In this case, when k is odd, we find that wk(t) can consist only of even
harmonics; likewise, when k is even, we find that wk(t) can consist only of odd harmonics.
Most importantly for the results that we present in section 3, when k is even, wk(t) will contain
some multiple of the fundamental mode.

Lemma 3. Suppose that Vin(t) = A e2π iωt + A e−2π iωt . Then the solution of (12)–(13) can be
written in the form

w2l (t) =
l∑

j=0

a2j+1 e2π i(2j+1)ωt + a2j+1 e−2π i(2j+1)ωt , (23a)

w2l+1(t) =
l+1∑
j=1

b2j e2π i(2j)ωt + b2j e−2π i(2j)ωt , (23b)

where the a and b coefficients depend on l.

Proof. Applying lemma 1 to the first equation (12), we find that

w0(t) = B e2π iωt + B e−2π iωt , (24)

for an appropriate complex constant B ∼ A. This implies that for k = 1, (13) is

Lw1 = 8C1π
2ω2[B2 e4π iωt + B2 e−4π iωt ].

By lemma 1, this implies that

w1(t) = D e4π iωt + D e−4π iωt , (25)

again for an appropriate complex constant D ∼ A2. Our expressions for w0(t) and w1(t) verify
(23) for l = 0. We now proceed inductively. Assume that (23) is true for l = 0, 1, 2, . . . , 	.
We then use (13) to write

Lw2	+2 = −C1
d

dt

2	+1∑
n=0

wn

d

dt
w2	+1−n

= −C1
d

dt

[
	∑

m=0

w2m

d

dt
w2(	−m)+1 +

	∑
m=0

w2m+1
d

dt
w2(	−m)

]
.

In the first sum on the right-hand side, each term in the sum is the product of an odd mode
(from the even term w2m) with an even mode (from the derivative of the odd term w2(	−m)+1).
Each term must therefore be an odd mode, so the first sum will be a sum of odd modes. The
second sum must also be a sum of odd modes, by analogous reasoning. Writing this out, we
obtain

Lw2	+2 = −C14π iω
d

dt

	∑
m=0

m∑
j=0

	−m+1∑
k=1

ka2j+1b2k e2π i(2j+2k+1)ωt

+ ka2j+1b2k e−2π i(2j−2k+1)ωt + c.c.

7
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In the above equation, ‘c.c.’ stands for the complex conjugate of the preceding terms. Because
(2j + 2k + 1) and (2j −2k + 1) are always odd, the right-hand side consists only of odd modes.
The largest mode is the (2	 + 3)th mode. Note also that when k = 1, (2j − 2k + 1) will equal
±1 when j = 1 or j = 0, so there will also be a contribution of e±2π iωt , also known as the
fundamental mode. Therefore, we see that the equation for w2	+2 can be written in the form

Lw2(	+1) =
	+1∑
j=0

B2j+1 e2π i(2j+1)ωt + B2j+1 e−2π i(2j+1)ωt ,

for suitable complex constants B2j+1. Then by lemma 1, we have verified (23a) for l = 	 + 1.
Our next task is to verify (23b) for l = 	 + 1. We start with (13) and write

Lw2	+3 = −C1
d

dt

2	+2∑
n=0

wn

d

dt
w2	+2−n

= −C1
d

dt

[
	+1∑
m=0

w2m

d

dt
w2(	−m+1) +

	∑
m=0

w2m+1
d

dt
w2(	−m)+1

]
.

This time, the first sum on the right-hand side contains odd modes multiplied by odd modes,
since both 2m and 2(	−m + 1) are always even. Similarly, the second sum on the right-hand
side contains even modes multiplied by even modes, since both (2m + 1) and 2(	−m) + 1 are
always odd. Therefore, the entire right-hand side consists of a sum of even modes—modes of
the form e±2π i(2q)ωt for the integer values of q. Writing everything out, we will find that the
largest mode is the (2	 + 4)th mode. Therefore, we may write

Lw2(	+1)+1 =
	+2∑
j=0

D2j e2π i(2j)ωt + D2j e−2π i(2j)ωt ,

for suitable complex constants D2j . We apply lemma 1 one last time to conclude that (23b) is
true for l = 	 + 1, finishing the induction step and the proof. �

At each order of ε, the function wk(t) is the steady-state solution of the damped, driven
linear system (13). Therefore, we refer to the sum (11) as the steady-state solution of the
damped, driven nonlinear system (4). Inspecting (11) and (24), we see that if ε = 0, i.e. if
the capacitors do not depend on voltage, then the steady-state solution contains no harmonics
other than the fundamental. In this case, the steady-state solution consists of V (t) = w0(t).

When ε �= 0, i.e. when we switch on the nonlinearity in the system, the circuit transfers
energy from the fundamental frequency (or first harmonic) of the input function into higher
harmonics. As is evident from (11) and (23), at order εk , the solution wk(t) will contain
a linear combination of harmonics all the way up to the (k + 1)st harmonic. Through this
process, the period of V (t) remains the same as the period of Vin(t)—both input and output
signals have the period T = 1/ω.

For the purposes of illustration, we have numerically integrated (1) with parameters
C0 = C1 = 1, ε = 0.1, L = 1, R = 3.281 24 and with input signal given by (14) with
A = 2.2 and ω = 0.170 988. In the left panel of figure 3, we plot (I (t), V (t)) for t = 0
until t = 20/ω. This phase portrait shows that the system starts at the origin and approaches
a nonlinear oscillatory steady state (or limit cycle). In the right panel of figure 3, we have
plotted in a dashed line the numerically obtained steady-state solution for V (t). Superimposed
on this dashed line is a solid line consisting of approximation (11) truncated at k = 10. The
perturbative approximation deviates slightly from the numerical solution for those values of
t, where the (I (t), V (t)) trajectory turns its sharpest corner, i.e. in the lower-left quadrant of

8
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Figure 3. The left panel shows the phase trajectory (I (t), V (t)) obtained by numerically integrating
(2) until the system has reached steady state. The right panel compares the numerically obtained
steady-state solution (dashed line) with the perturbative approximation (11) truncated at k = 10.
The only values of t for which the perturbative and numerical solutions differ are those for which
the phase portrait exhibits the greatest local curvature.

the left panel of the figure. If we were to redo this comparison with, say, A = 1.1, then
the nonlinear limit cycle would not be so sharply curved in the lower-left quadrant, and the
perturbative and numerical approximations would be indistinguishable.

Remark 2. As described in the proof of lemma 3, the even numbered functions w2k(t) contain
a linear combination of odd harmonics starting with the fundamental. Therefore, when ε �= 0,
the solution V (t) at (2k)th order will contain a term of the form

ε2k(c2kA
2k+1 e2π iωt + c.c.), (26)

for suitable complex constants c2k . The power of A arises naturally from the quadratic
nonlinearity on the right-hand side of (13).

Taken together, the results indicate that the response V (t) of the system to the input
function (14) will be smooth and periodic with period T. That is, with this choice of input
function, the response V (t) can be expanded in a real Fourier series:

V (t) =
∞∑

k=0

αk cos 2πkωt +
∞∑

k=1

βk sin 2πkωt. (27)

We do not insert this directly into (4) because it leads to unnecessary complications, and in
the rest of the paper, we do not need expressions for the coefficients αk and βk . Using (3), we
have

I (t) = C(V )
dV

dt
+

1

R
V.

We conclude that I (t) is T-periodic and smooth, and we can therefore write

I (t) =
∞∑

k=0

γk cos 2πkωt +
∞∑

k=1

δk sin 2πkωt. (28)

9
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3. Energy conservation and voltage boosting

Let us add I (t) times (1a) to V (t) times (3). The result is

LI
dI

dt
+ V

dQ

dt
= IVin(t) − V 2

R
. (29)

The magnetic energy stored in the inductor at time t equals

Eind(t) = 1
2LI (t)2. (30)

The electrical energy stored in the capacitor at time t equals

Ecap(t) =
∫ Q(V (t))

0
V (q) dq, (31)

where V (q) is the inverse function of Q(v). This implies that

d

dt
Ecap(t) = V (t)

dQ

dt
= V C(V )

dV

dt
.

Hence, we may rewrite the left-hand side of (29) as a total derivative and obtain

d

dt

[
Eind(t) + Ecap(t)

]
= IVin(t) − V 2

R
.

Integrating both sides from t = 0 to t = T yields

Eind(t) + Ecap(t)|t=T
t=0 =

∫ T

0
IVin(t) − V 2

R
dt. (32)

Now let us assume that the system is in steady state, so that V (t) and I (t) are given by (27)
and (28). Then V (t) and I (t) are both T-periodic, which implies by (30) and (31) that Eind(t)

and Ecap(t) are both T-periodic. Therefore, the left-hand side of (32) vanishes and we are left
with ∫ T

0
I (t)Vin(t) dt = 1

R

∫ T

0
V (t)2 dt. (33)

This says that when the system has reached steady state and all signals are T-periodic, the
energy dissipated through the resistor in one cycle must equal the energy pumped into the
system through the driving function.

Now we assume that Vin(t) is given by the real input function (14), and we substitute
the Fourier series expansion for I (t) given by (28). Using orthogonality of the Fourier basis
functions, (33) becomes∫ T

0
V (t)2 dt = ‖V ‖2

2 = Rδ1A

2ω
.

Substituting (14), (27) and (28) into (1a), we obtain α0 = 0 and δ1 = −α1/(2πLω), which
means that

‖V ‖2
2 = − RAα1

(2ω)2πL
. (34)

Now, by the results of section 2 and remark 2, we know that

α1 =
∞∑

k=0

ε2kA2k+1q2k, (35)

10
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where the coefficients q2k are real. In words, q2k is the coefficient of A2k+1 cos 2πωt in the
solution w2k(t). For example, using the methods of the previous section, we can write (24)
with

B = −iA

2(−4π2ω2C0 + 2π iω/R + 1/L)
,

which implies that

w0(t) = (2 Re B) cos 2πωt − (2 Im B) sin 2πωt,

so that

Aq0 = 2 Re B = − 2πωA/R

(−4π2ω2C0 + 1/L)2 + 4π2ω2/R2
.

Note that when C0, L, R and ω are positive, then q0 < 0. Therefore, if we define

K = − Rq0

4ω2πL
,

then K > 0. Using (35), we obtain from (34) the result

‖V ‖2 =
√

KA

(
1 +

∞∑
k=1

ε2kA2k q2k

q0

)1/2

. (36)

3.1. Effect of nonlinearity

When ε = 0, the system is linear and (36) reduces to

‖V ‖2 =
√

KA,

showing that the L2 norm of the output signal depends linearly on the input amplitude. Since
the L2 norm of the input signal is in fact A/

√
2ω, we could equally well say that the L2 norm

of the output depends linearly on the L2 norm of the input.
However, when ε �= 0, the system is nonlinear and we can see from (36) that the L2

norm of the output signal depends nonlinearly on the input amplitude A. If all the ratios
q2k/q0 are positive, we can be certain that the quantity on the right-hand side of (36) will
grow superlinearly for all A. However, superlinear growth on some interval, A ∈ [0, Amax],
is possible when, say, q2/q0 > 0 and q4/q0 > 0 but q2k/q0 < 0 for k � 3. We examine this
issue in section 3.3 below.

3.2. Relationship with L∞ norm

Unfortunately, there appears to be no way to use Fourier coefficients to easily compute the
L∞ norm of V (t). However, we can use the trivial upper bound∫ T

0
V (t)2 dt � T ‖V ‖2

∞

together with T = 1/ω to derive

‖V ‖∞ �
√

K̃A

(
1 +

∞∑
k=1

ε2kA2k q2k

q0

)1/2

, (37)

where

K̃ = ωK = − Rq0

4ωπL
.

11



J. Phys. A: Math. Theor. 43 (2010) 205101 H S Bhat et al

When ε = 0, we know that the exact steady-state solution will be of the form V (t) =
α1 cos 2πωt + β1 sin 2πωt , so (36) reduces to

1√
2ω

√
α2

1 + β2
1 =

√
KA.

Of course, for this exact solution, we know ‖V ‖∞ =
√

α2
1 + β2

1 , so we have that

‖V ‖∞ =
√

2K̃A.

In other words, when ε = 0, the lower bound (37) is not sharp—to make it so, we would have
to multiply the right-hand side of (37) by

√
2. This leads to the following performance goal:

in order for the nonlinear system to have a steady-state output whose L∞ norm obeys (37) and
exceeds the L∞ norm of the steady-state output for the corresponding linear system, the L∞

norm of the nonlinear signal should obey

‖V ‖∞ �
√

2K̃A

(
1 +

∞∑
k=1

ε2kA2k q2k

q0

)1/2

. (38)

Of course, unlike (37), the upper bound (38) will not be true for all choices of circuit parameters.
We shall compare both lower bounds (37) and (38) against numerical simulations in
section 3.4.

3.3. The coefficients q2k/q0

The proofs of lemmas 2 and 3 give an algorithmic procedure that can be used to iteratively solve
the system (12)–(13). Implementing this procedure in Mathematica, we generated symbolic
expressions for w0(t), w1(t), . . . , w10(t), from which we can extract q2k as the coefficient of
A2k+1 cos 2πωt in w2k(t). In general, q2k will depend on the parameters C0, C1, L, R and ω.
Let us record here the value of one of the ratios we calculated:

q2

q0
= 32π4a2C2

1L
2R4ω4

(
40π4C2

0L
2R2ω4 − 2π2Lω2(7C0R

2 + L) + R2
)

(R2(1 − 16π2C0Lω2)2 + 16π2L2ω2)(R2(1 − 4π2C0Lω2)2 + 4π2L2ω2)2
. (39)

For reasons of space, we omit the algebraic expressions of the other ratios, q2k/q0 for
k = 2, 3, 4, 5.

Before doing any further analysis, let us fix L = C0 = C1 = 1 and examine the R-
and ω-dependence of the ratios q2k/q0 for k = 1, 2, 3, 4. We present the four contour plots
in figure 4, each plotted for (R, ω) ∈ [0, 2] × [0, 2]. The areas shaded in gray are regions
of (R, ω) parameter space in which the corresponding ratio is negative. The white areas
with no shading represent regions of parameter space in which the corresponding ratio is
positive.

For each of the four contour plots, we have examined what happens for larger values of
R and ω than those shown here. In summary, as we follow the plots for R > 2, we find that
the gray bands extend to the right indefinitely; however, the heights of these gray bands do
not grow. When we follow the plots for ω > 2, we find that the large white region continues
indefinitely. However, for each of the four plots, in the large white expanse we find that the
ratios are nearly constant, positive and small. The only region of parameter space in which we
can find large variations in the ratios are immediately above and below the gray bands—see
the contour lines that are in the white regions of each of the four plots.

Of course, the only reason that we are interested in those regions where the ratios q2k/q0

are positive is because we are mainly interested in the possibility that (36) gives us superlinear

12
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Figure 4. Each panel shows a contour plot for the corresponding ratio q2k/q0, for k = 1, 2, 3, 4.
The white areas with no shading represent regions of parameter space in which the corresponding
ratio is positive. The areas shaded in gray/black are regions of (R, ω) parameter space in which
the corresponding ratio is negative. Here, we have fixed the parameters L = C0 = C1 = 1.

dependence of ‖V ‖2 on A. As it turns out, we do not need all of the ratios q2k/q0 to be positive
to guarantee this superlinear dependence for A ∈ [0, Amax] for some Amax > 0.

Consider, for example, the circuit with the parameters C0 = C1 = 1, ε = 0.1, L = 1 and
R = √

10. Suppose the input signal has the frequency ω = 0.176 598. Then, we can calculate
the values of the following ratios:

q2

q0
= 0.025 6221,

q4

q0
= 0.001 017 09,

q6

q0
= 0.000 033 7574, (40a)

q8

q0
= −4.103 03 × 10−7,

q10

q0
= −2.952 98 × 10−7. (40b)

Though only the first three ratios are positive, this is enough to give us superlinear growth
on the right-hand side of (36) for A ∈ [0, 2]. To see this, we plot the relative percentage boost
in two-norm enjoyed by the nonlinear system over the corresponding linear system (i.e. the
circuit with precisely the same parameters as given above, except that ε = 0):

P = ‖V nonlinear‖2 − ‖V linear‖2

‖V linear‖2
× 100 ≈

⎡⎣(
1 +

5∑
k=1

ε2kA2k q2k

q0

)1/2

− 1

⎤⎦ 100, (41)

where the only reason for the approximation sign is that we have truncated the infinite sum
on the right-hand side of (36) at k = 5, or tenth order in ε. The plot of P as a function
of A, with the ratios given in (40), is shown in the left panel of figure 5. The plot clearly
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Figure 5. On the left, we plot the percentage boost P caused by nonlinearity—defined in (41)—as
a function of input amplitude A. On the right, we plot the L2 norm of the steady-state output
signal, ‖V ‖2, as a function of input amplitude A—the values indicated by circles were generated
by numerically integrating Kirchhoff’s laws (2) until they reached steady state and then computing
‖V ‖2 over one period, while the line sitting behind the circles is a plot of the right-hand side of (36),
truncated at k = 5. All plots are for a circuit with the parameters C0 = C1 = 1, L = 1, R = √

10
and ω = 0.176 598. Nonlinearity was introduced by setting ε = 0.1; for the corresponding linear
circuit, we set ε = 0.

shows that nonlinearity causes a boost in the two-norm of the steady-state output signal, and
that this boost approaches 6% when the input amplitude reaches A = 2—in other words, the
right-hand side of (36) depends superlinearly on A even though not all the ratios in (40) are
positive.

We have also plotted in the right panel of figure 5 the results of a numerical study. In this
numerical study, we chose 50 equispaced values of A from A = 0.04 to A = 2.00. For each
value of A, keeping the other parameters fixed (C0 = C1 = 1, ε = 0.1, L = 1, R = √

10,
ω = 0.176 598), we numerically integrated Kirchhoff’s laws (1) until the solution reached
steady state, and we then used the numerical solution to calculate ‖V ‖2. What the right panel
of figure 5 shows is that the numerically computed values of ‖V ‖2 agree very closely with the
right-hand side of (36). This verifies that truncating the expansion at k = 5, or, equivalently
at tenth order in ε, yields an accurate measure of the L2 norm of the steady-state output signal.

For |A| � 2, our capacitor model becomes unphysical. A real voltage-dependent
capacitor will saturate at voltages that are large in absolute value. Model (5) does not saturate,
and hence is valid only for voltages that are not large in absolute value.

3.4. Numerical results on the L∞ norm

As we mentioned before, computing a perturbative approximation to the L∞ norm of the
steady-state output is not a simple task. In figure 6, we compare the bounds (37) and (38)
against numerical results.

In the left panel of figure 6, we use the same circuit as in previous examples; the parameters
are C0 = C1 = 1, ε = 0.1, L = 1, R = √

10 and ω = 0.176 598. In this case, for each
value of A, we numerically solve Kirchhoff’s laws (1) until the solution reaches steady state
and then compute the L∞ norm of the numerical solution. The numerical results are plotted
using small circles. One can see that the numerical values for ‖V ‖∞ do obey the rigorously
derived upper bound (37), which is plotted as the solid curve with smaller slope. However,
the numerical values for ‖V ‖∞ do not obey the performance goal (38), which is plotted as the
solid curve with larger slope. In this case, if one’s goal is to produce a steady-state output
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Figure 6. These plots compare the L∞ bounds (37) and (38) against numerical results. In both
plots, the straight, solid line with smaller (respectively, larger) slope is given by the right-hand side
of (37) (respectively, (38)). Each small circle is the result of numerically integrating Kirchhoff’s
laws (2) until the solution reached steady state, and then using the numerically computed solution
to calculate ‖V ‖∞. In the left panel, the circuit parameters were C0 = C1 = 1, ε = 0.1, L = 1,
R = √

10 and ω = 0.176 598. In the right panel, the circuit parameters were C0 = 1, C1 = −0.5,
ε = 1, L = 0.5, R = 0.5 and ω = √

2/(2π). Unlike in the left panel, the L∞ norms in the right
panel do satisfy the performance goal (38), indicating that this circuit has a genuine advantage over
the corresponding linear circuit (with ε = 0), if the goal is to produce the steady-state output with
the largest L∞ norm.

signal V (t) that has the largest possible L∞ norm, one would do better using the linear ε = 0
circuit.

In the right panel of figure 6, we use a different nonlinear circuit; the parameters are
now C0 = 1, C1 = −0.5, ε = 1, L = 0.5, R = 0.5 and ω = √

2/(2π). We carry out the
same numerical procedure as described in the previous paragraph and plot the numerically
computed values of ‖V ‖∞ using small circles. This time, the numerical values for ‖V ‖∞
obey not only the rigorous lower bound (37), but also the performance goal (38). This shows
that there are indeed circuits whose steady-state outputs obey (38), and that this performance
goal could be used as a constraint in an algorithm that uses optimization to find the nonlinear
circuit that exhibits the greatest relative boost in ‖V ‖∞ over the corresponding linear system.

4. Conclusion

In this work, we have analyzed the steady-state oscillations of a damped, driven nonlinear LRC
oscillator. In the perturbative regime where (11) converges, we find only harmonic oscillations
at the same period as the input forcing.

We fully expect that when the driving amplitude A is sufficiently large, the perturbative
expansion (11) will break down. This will lead to possible subharmonic oscillations and
oscillations with other periods, which we shall analyze in future work, using a capacitor model
that saturates at very high and very low voltages.

The beauty of the perturbative approach is that we can combine it with an argument about
steady-state energy conservation to determine the L2 norm of the output signal. We showed
that there is a large region of parameter space where the L2 norm of the nonlinear system’s
output signal exceeds the L2 norm of the output signal for the corresponding linear system.

Because we have an algorithm for determining symbolic expressions of the coefficients
q2k/q0 that play a role in the nonlinear signal’s L2 norm—and possibly in the L∞ norm as well,
our analysis enables one to use optimization methods to design systems where nonlinearity
causes the maximum possible gain relative to the corresponding linear system.
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This work provides an analytical derivation of a property that has only been noted
experimentally and numerically in our prior work [BA08, LPL+10]. In the experimentally
described circuits, the coefficients C0, C1 and ε are chosen so that the ratios described above,
q2k/q0, do indeed turn out to be positive. The above derivations provide a mathematical
justification for why we have observed a nonlinear dependence of the output two-norm and
amplitude on the input amplitude.

Finally, in future work, we shall apply these techniques to networks of nonlinear
oscillators. We hope to show that even if each individual LRC oscillator provides only a small
boost, the aggregate effect of a large number of oscillators could be quite large, depending on
the network topology and other design factors.
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