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Abstract—Nonlinear LC lattices have shown promise for high-
power high-frequency signal generation. Here we offer the first de-
tailed study of the frequency response of these lattices, as well as
a method designed to find input excitation frequencies that result
in intense harmonic generation. The crux of the method is to lo-
cate regions in frequency space where the spectral norm of the lat-
tice response matrix is large. When the fundamental excitation fre-
quency (or one of its multiples) is located in these regions, the lattice
harmonic response is intensified. These findings are supported by
extensive numerical simulations and experimental measurements.
We deal chiefly with a first-order dependency of capacitance (C)
on voltage (V); however, it is also shown that lattices with higher
order C–V dependencies achieve proportionally higher harmonic
generation. Simulations using a 0.13- m CMOS process indicate
harmonic generation at 400 GHz (three times the cutoff frequency
of the fastest active device in this process), suggesting potential ap-
plications of this lattice topology in terahertz range devices.

Index Terms—Inductor–capacitor lattices, nonlinear transmis-
sion lines, solitons, terahertz frequency generation.

I. INTRODUCTION

L ATELY there has been increasing interest in imple-
menting devices operating in the terahertz frequency

band 100 GHz–10 THz [1] with exciting potential applica-
tions in a variety of areas such as spectroscopy [2], imaging
[3], and communications [4]. However, it is quite challenging
to generate powerful terahertz signals in today’s commercial
CMOS processes, given that the maximum operating frequen-
cies of most MOS transistors range between 200–300 GHz.

To go beyond the frequency limit imposed by active devices,
people resort to nonlinear passive structures, which are capable
of generating high-order harmonics of the input signals [5]. An
extensively studied example is the nonlinear transmission line
[6], which (in the most popular version), consists of inductors
and voltage-dependent capacitors (varactors [7], [8]) [9]–[17]

Manuscript received May 04, 2009; revised February 25, 2010; accepted
April 15, 2010. Date of publication May 24, 2010; date of current version
July 14, 2010. This work was supported by the C2S2 Focus Center, one
of six research centers funded under the Focus Center Research Program
(FCRP), a Semiconductor Research Corporation entity. The work of W. Lee
was supported under a Samsung Fellowship. The work of H. S. Bhat was
supported in part by the National Science Foundation (NSF) under NSF Grant
DMS-0753983. The work of E. Afshari was supported by the NSF under NSF
Grant DMS-0713732 and under CAREER Award 0954537.

G. N. Lilis, J. Park, W. Lee, G. Li, and E. Afshari are with the Department
of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850
USA (e-mail: gnl2@cornell.edu; jp399@cornell.edu; wl287@cornell.edu;
gl246@cornell.edu; ehsan@ece.cornell.edu).

H. S. Bhat is with the School of Natural Sciences, University of California,
Merced, CA 95343 USA (e-mail: hbhat@ucmerced.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2010.2049678

Fig. 1. Nonlinear LC lattice.

and has been implemented using Schottky barrier strip lines
[18], micromachined waveguides [19], as well as using struc-
tures on GaAs [20]–[23], InP [24], and Si [25] substrates. How-
ever, due to loss and limited input power, the high-frequency
components in the output are usually small.

To achieve high power at high frequencies, we study a
2-D nonlinear LC lattice, as shown in Fig. 1. This lattice is
a foursquare periodic structure [26], consisting of identical
inductors and voltage-dependent capacitors. It is excited by
sinusoidal voltage sources on two sides of its boundary and
terminated with a matched load on the other two sides.

Nonlinear wave propagation in similar 2-D topologies
involving different types of nonlinearities has been studied
in the past. Examples include: lattices with second-order
voltage-dependent capacitive elements analyzed using the
Kadomtsev–Petviashvili (KP) equation [27], Toda lattices
exhibiting logarithmic nonlinearities [28], [29], and coupled
nonlinear transmission lines with general polynomial nonlin-
earities [30]–[32].

Recent theoretical work in 2-D nonlinear lattices with
first-order capacitance–voltage dependencies [33], [34] demon-
strated how constructive interference enables in-phase waves
to combine and produce outgoing waves with much larger
peak-to-peak amplitudes than the ones measured in linear
equivalents. Furthermore, experimental work verified that
these lattices support Cerenkov radiation and soliton resonance
phenomena [35], [36].

In previous work demonstrating the potential utility of non-
linear LC lattices for high-frequency signal generation, the fre-
quency response of these lattices was not studied. Here we solve
this problem; by studying in detail the frequency response, we
develop the intense harmonic generation (IHG) method, which
can be used to find input excitation frequencies that result in
IHG. A feature of the IHG method is that it can be applied to
study 2-D lattices with polynomial capacitance–voltage depen-
dencies of arbitrary order, which are not well-understood in gen-
eral.

0018-9480/$26.00 © 2010 IEEE
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This paper is organized as follows. Section II contains the
modeling of the lattice behavior and the study of its frequency
response. The section concludes with the description of the
IHG method. Section III contains the verification of the IHG
method using extensive MATLAB simulations and experimental
measurements of a real lattice implemented on printed circuit
board (PCB). This paper resumes in Section IV, where an
implementation with a 0.13- m CMOS process is presented. It
is shown by simulation using Cadence Spectre that this lattice
topology supports IHG at terahertz frequencies.

II. NONLINEAR LATTICE MODEL AND IHG METHOD

A. Preliminaries

In this paper, an square lattice is studied, the cells of
which are identical. Each cell consists of one nonlinear capacitor
and two identical inductors, as displayed in Fig. 1. A first-order
approximation is used to model the capacitance–voltage depen-
dence of the nonlinear capacitors, i.e.,

(1)

where is the capacitance at zero voltage, is a constant, and
is the capacitance of the , cell at voltage . Although

this approximation is adopted here for simplicity, higher order
dependencies can be studied in a similar manner.

By Kirchhoff’s Law, the time-domain behavior of this lattice
can be described as follows:

(2)

in which state vector consists of the capacitor voltages and
the inductor currents, matrix contains the zero-biased capac-
itances , and inductance, matrix contains the zero-biased
capacitances only, matrix describes the interconnections
of the lattice elements, as well as inductor’s ohmic losses, and
vector contains the input signals. The “.” notation indicates
element-wise multiplication. (For additional details, consult the
Appendix.)

By applying the Fourier transform on both sides of (2), one
obtains the frequency-domain description of the lattice

(3)

where represents the frequency-domain variables and “ ” de-
notes element-wise convolution. Solving the above system per-
turbatively, we derive the frequency response

(4)

with

(5)

B. th-Order Capacitance–Voltage Dependencies

A similar approach can be used for the harmonic analysis
of lattices with varactors satisfying an th-order capaci-
tance–voltage relation

(6)

In this case, the nonlinear part of the state equation contains
multiconvolutions instead of the convolution pairs contained in
(3)

(7)

Using a multidimensional perturbative method, the solution of
(7) can be expressed as a series of solutions indexed by a vector

(8)

Substituting (8) in (7) and equating with zero the coefficients of
the terms leads to the solution of (7), obtained in a
recursive manner, shown in (9) at the bottom of this page.

C. Harmonic Generation

The convolutions in the solutions (5) and (9) are responsible
for harmonic generation appearing in the nonlinear parts of the

(9)
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Fig. 2. Harmonic generation example.

state (voltage/current) vectors and
, respectively. This phenomenon is called spectrum ex-

pansion and is illustrated in the plot of Fig. 2 for the case of
first-order capacitance–voltage dependent varactors. More pre-
cisely: for a sinusoidal voltage input , the linear response

is a sinusoidal signal at the fundamental frequency; by
convolution, a dc component and a second harmonic are gen-
erated in ; then, again by convolution, the third harmonic
appears in . The other high-order harmonics are generated
in a similar way. Similar conclusions can be drawn using (9)
for th-order capacitance–voltage dependencies with .
In these cases, as the order and the respective coefficients

(with ) become larger, the achieved spectrum expan-
sion increases proportionally, due to multistage convolutions in
(9). As a simple example, the harmonics generated by

when reach at most (see Fig. 2).
This should be compared with the harmonics generated by an

case where ex-
pands the spectrum of the solution of (9) to .

Based on this harmonic generation mechanism, solution (5)
can be expressed as a summation of a dc component , a
fundamental , and different harmonics

(10)

with

(11a)

(11b)

(11c)

(11d)

and so on for for . The harmonic performance of the
lattice, when excited by a fundamental frequency , can be
evaluated by measuring the harmonic energy , which is

defined as the sum of the second norms of the harmonic vectors
,

(12)

D. Spectral Norm Analysis

The harmonic expansion (10), as well as similar expansions
of (9) for the case of th-order capacitance–voltage dependen-
cies, suggest that the matrices ,
play an important role in determining the energy of the th har-
monic vector expressed by the square of its second norm

in (12). The harmonic vectors are calculated by
the multiplication of the matrix with the convo-
lution vectors , which also involve multiplica-
tions of the matrices , with the con-
stant input vector , according to (5). The frequencies
at which the multiplication of a vector with the matrices

, results in a vector of higher energy
(with the energy of a vector expressed as the square of its
second norm ) are the ones at which the spectral norm of

, is maximized.1 Consequently, since
the harmonic vectors in (11a)–(11d) are obtained by multipli-
cations of , higher values of the spectral norm of

at the fundamental or its harmonics lead to
a more intense harmonic boost. Following these ideas, the IHG
method (presented in Section II-E) uses a plot of the spectral
norm of with respect to in order to identify the fun-
damentals , which result in intense harmonic boost.

As an example, consider Fig. 3, which shows a plot of the
spectral norm of for a lattice with parameters speci-
fied by Table I. This plot indicates that there are two desirable
frequency bands in which the spectral norm is locally maxi-
mized: Low: 40–42 MHz and High: 54–57 MHz.

Two intertwined factors affecting the spectral norm values of
are: 1) the ohmic loss of the lattice inductors and

2) the lattice size appearing in the matrix [a component
of according to (5)]. As the ohmic losses of the inductors
increase, or as the lattice size decreases, the regions of local
maxima of the spectral norm—which correspond to frequency
bands at which intense harmonic boost is observed—disappear.
This can be seen in the spectral norm plots of Fig. 3.

The lattice harmonic behavior described by the spectral norm
of also depends on the distribution of the inductor
and capacitor values across the lattice. The design of desired in-
ductor and capacitor values, tailored to a specific harmonic am-
plification performance, is a separate topic, beyond the scope of
this paper. However, nonuniformity due to inductor and capac-
itor imperfections can be studied. Such lattices can be modeled
by adding a random number, uniformly distributed in ,
to the component values , (where denotes the respec-
tive tolerance). The spectral norm plots of Fig. 4 demonstrate
the effect of component imperfections on the lattice harmonic
behavior. Based on these plots, it is clear that for component

1The spectral norm for a square matrix is defined as
eigenvalue of The spectral norm of a square matrix

satisfies
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Fig. 3. Spectral norm of as a function of excitation frequency.
(a) Lattices with inductors of different ohmic losses. Dotted line
(implemented example). Solid lines , , and (other test cases).
(b) Lattices of different sizes. Dotted line (implemented example).
Solid lines and (other test cases).

TABLE I
LATTICE PARAMETERS

tolerances greater than 10%, the range of frequencies in which
the spectral norm of obtains a relatively large value
changes unpredictably [see Fig. 4(b) and (c)], making it hard to
identify potential fundamental frequencies generating large har-
monic boost.

E. IHG Method

The IHG method uses the spectral norm values of
to identify excitation frequencies causing intense harmonic
boost. The IHG method is divided into the following two steps.

(s1) Calculate the spectral norm , which is a
function of the input frequency . Identify frequencies

, at which is maximized.

Fig. 4. Spectral norm of as a function of excitation frequency for the
implemented lattice with components of: (a) zero tolerance (ideal), (b) 10%
tolerance, (c) 20% tolerance, and (d) 30% tolerance.

(s2) For a given “M-plet” , with
, the associated promising frequency for

IHG, , is given by

(13)

where is a measure of
distance between the harmonics and the frequencies

’s found in (s1).
Intuitively, the IHG method attempts to find a fundamental

frequency , the harmonics of which are close to the
frequencies ’s of the lattice. The efficiency of this method
will be verified in Section III.

III. IHG METHOD VERIFICATION

The IHG method is applied to a large variety of nonlinear
lattices to verify its efficiency. Both numerical simulation with
MATLAB and experimental measurement on PCB show excellent
agreement with the IHG method prediction.

A. Simulated Tests

Numerical simulations are performed on a 20 20 lattice,
and are characterized by four parameters (number of nodes),

(zero-voltage capacitance), (inductance), and (nonlinear
coefficient). The lattice is excited with 0.4 V sinusoidal
voltage sources on the bottom and left sides, as in Fig. 1.
To verify the generality of the IHG method, different lattices
are examined by changing one of the four parameters while
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Fig. 5. Frequency estimation. (a) Variable inductance pF
. (b) Variable capacitance nH .

keeping the other three constant. Specifically, , , , and
are swept as follows.

• nH pF
.

• pF nH
.

• ; pF
nH .

• ; pF nH
.

The steps of the numerical tests performed in each of the above
scenarios are as follows.

(s1) Calculation of:
(a) The harmonic vectors using (5) and (10) for

input fundamental frequency .
(b) The harmonic energy given by the sum (12), up to

for frequency . Higher order harmonics
were omitted as their amplitudes are negligible.

(s2) Repetition of (s1) with in a wide frequency band (0
up to the cutoff frequency) appropriately selected to cap-
ture all variations of .
(s3) Selection of frequencies of IHG as the ones that
locally maximize the harmonic energy, i.e.,

(14)

The IHG method is carried out in the following way.
None in (s1), two lattice modes and are identified.
Following (s2), and according to (13), promising frequen-
cies are estimated for several “2-Plets” as follows:

We compare these estimated frequencies given by the
IHG method with the frequencies locally maximizing the
lattice harmonic energy given by (14). These comparisons are
displayed in Figs. 5 and 6. The efficiency and generality of the
IHG method is clearly shown by the agreement between predic-
tion and actual values in all cases.

Fig. 6. Frequency estimation. (a) Variable nH pF .
(b) Variable nH pF .

Fig. 7. Photograph of the LC lattice.

B. Experiment on PCB

A 20 20 nonlinear LC lattice is implemented on PCB
(Fig. 7), characterized by the parameters listed in Table I. The
promising input frequencies for this lattice are calculated based
on the IHG method. These frequencies are compared with
frequencies derived by experimental voltage measurements.
For this lattice, the spectral norm of matrix is plotted
as a function of the excitation frequency in Fig. 3. Two fre-
quencies can be identified, at which the spectral norm is locally
maximized, i.e., MHz and MHz. The dis-
tance measures are calculated according to the IHG
method, for several pairs with . The
results are plotted in Fig. 8. According to the plots of Fig. 8, the
minima of the distance measures reveal estimates of promising
input frequencies MHz, ,

MHz, , and MHz.
The results of the IHG method are verified by performing

the simulation steps described in Section III. Three candidate
frequencies (close to the previous estimated frequencies) were
obtained this way: MHz, MHz, and

MHz.
To verify this prediction, the lattice is excited at the bottom

and left side (Fig. 7) by in-phase sinusoidal sources with ampli-
tude 1 V frequency varying in the range 1–70 MHz. All ca-
pacitors are biased at mV, which gives the steepest
capacitance descent . The node with the maximum
response is selected as the output node, which, by symmetry,
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Fig. 8. Distance measure functions as a function of the fundamental frequency.

Fig. 9. Experimental results: Magnitude of the second, third, and fourth har-
monics as a function of the fundamental frequency MHz.

Fig. 10. Optimal lattice responses for different excitation frequencies (grey
bars) compared with lattice input (black bar). (a) Third and fourth harmonic
boost of fundamental 13 MHz. (b) Second harmonic boost of fundamental
18 MHz.

turns out to be the central node . The amplitudes of the
second, third, and fourth harmonics are plotted in Fig. 9, each
curve depicting the amplitude of one harmonic at different input
frequencies . It is shown that the nonlinear
LC lattice generates large harmonics for a certain input fre-
quency range, i.e., 7–30 MHz. Specifically, at MHz

MHz and MHz, the third, second, and
fourth harmonics are maximized, respectively. The spectra of
the output at MHz and MHz inputs are
displayed in Fig. 10, which shows rich harmonic generation at
these frequencies. Table II summarizes the results of the simula-
tion, estimation, and experiments, showing frequencies at which
intense harmonic boost occurs.

TABLE II
FREQUENCIES OF INTENSE HARMONIC BOOST

Fig. 11. Schematic of a nonlinear LC lattice in a CMOS process.

In conclusion, extensive numerical simulations and experi-
mental measurements show that the IHG method is an effective
method for determining optimal excitation frequencies that re-
sult in IHG.

IV. CMOS IMPLEMENTATION OF NONLINEAR LC LATTICE

In order to examine the performance of this lattice topology
in the terahertz frequency range, a 20 20 lattice using a stan-
dard 0.13- m CMOS process is designed and simulated. Fig. 11
shows the schematic of this lattice.

Multiple synchronous signal sources driving the left and
bottom side of the lattice to generate two planar wavefronts.
To make these signals sources, a tree-like distribution network
along with matching networks at each junctions is designed.
This network connects an external 50-GHz source to a series of
small amplifiers at each node. The output node is at the center
of the lattice and is matched to 50 . To make this node more
accessible, the upper right corner of the lattice is removed. The
entire top and left boundary nodes are terminated with a resistor
matched to the local impedance at that node. This will eliminate
any reflection from the boundaries that can interference with
the incoming waves from the sources.

All inductors are implemented using a 30- m coplanar wave-
guide with total inductance of 15 pH. Fig. 12 shows the simu-
lated quality factor of this inductor using Ansoft Technologies’
High Frequency Structure Simulator (Ansoft HFSS). The var-
actors are designed using an accumulation mode nMOSVAR
with average capacitance of 150 fF [37], [38]. Fig. 13(a) shows
the characteristic of the accumulation-mode nMOSVAR used
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Fig. 12. Simulated quality factor of each inductor.

Fig. 13. Simulated characteristic of the nonlinear capacitor used to build the
lattice in a 130-nm CMOS process. (a) Characteristic of MOSVAR used in the
nonlinear lattice. (b) Quality factor of each nMOSVAR.

in this design, and Fig. 13(b) shows its quality factor as a func-
tion of frequency. The ratio between minimum and maximum
capacitances is around 3, which determines the nonlinearity of
the lattice. Similar to [38], the varactors use a multifinger struc-
ture. The size and number of fingers is selected for a max-
imum nonlinearity and minimum series resistance. By carefully
optimizing the geometry of these varactors an RC cutoff fre-
quency of more than 150 GHz is achieved. To achieve the lowest
pulsewidth at the output of the nonlinear lattice, it is necessary
to carefully select the varactor bias point. In general, this may be
an additional constraint in system design since it will require ad-
ditional dc level shifting to adjust the input levels. Nonetheless,
this level of signal conditioning is easily achieved in today’s in-
tegrated circuits. In our design, this optimal bias point is around
0 V since at this point the C/V curve shown in Fig. 13(a) has
the highest slope. As a result, all MOSVARs are connected to a
ground plane, which simplifies the layout and fabrication.

Based on the inductance and average capacitance values, the
cutoff frequency of the lattice is 300 GHz. The output is mea-
sured at the center of the lattice with a 50- termination. All
circuit simulations are performed using Cadence Spectre.

Fig. 14 shows the lattice response for different inputs charac-
terized by variable frequency and fixed amplitude at 0.5 V. The
generation of the second, third, and fourth harmonics is max-
imized for input frequencies in the range of 50–70 GHz. Due
to the nonlinearity, the energy of the fundamental frequency is
converted into high-order harmonic components. However, the
frequency-dependent loss of the inductors due to skin effects
and substrate couplings, as well as the limited C/V swing range

Fig. 14. Simulation results: Magnitude of the second, third, and fourth har-
monics as a function of the fundamental frequency . -axis: excitation fre-
quency. -axis: harmonic magnitude.

Fig. 15. Simulated lattice response at input frequency 50-GHz: input (grey)
and output (black). (a) Frequency-domain response. (b) Time-domain response.

of the nMOS varactors, limit further amplification of the gen-
erated harmonics. Based on Fig. 14, the harmonic generation
stops for input frequencies greater than half of the cutoff fre-
quency 150 GHz .

It appears that the total energy of the generated harmonic
components is maximized for 50-GHz sinusoidal input. The
magnitudes of the harmonics of the node with the maximum
response for this input frequency are displayed in Fig. 15(a).
The nonlinearity of the lattice generates large components at
400 GHz, which is around three times more than the cutoff fre-
quency of the fastest active device in this process. Fig. 15(b)
shows the time-domain input and output waveforms measured
at the center of the lattice for 50-GHz sinusoidal inputs. Due to
the nonlinear constructive interference, the output peak-to-peak
amplitude is higher than 3 V, which is three times greater than
the input amplitude. The half amplitude pulsewidth of the output
waveform is as narrow as 1.67 ps. This is the largest reported
amplitude of such narrow pulses generated on a silicon process.

Lattices of different dimensions, capacitance , and
inductance values excited at 50 GHz are also simulated.
Fig. 16(a) displays the magnitude of the first, second, and third
harmonics of the lattice response for different values of
varying from 5 to 35. According to this figure, the harmonic
boost is maximized when . For , the
nonlinear wave combining is less intense, resulting in degraded
harmonic generation. On the other hand, for , the
harmonic magnitudes of the lattice response are attenuated
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Fig. 16. Harmonic magnitude for 50-GHz input. (a) As a function of the lattice
size (cutoff frequency GHz). (b) As a function of the cutoff frequency

.

due to the accumulated loss by the increased number of lattice
sections. Fig. 16(b) displays the magnitude of the first, second,
and third harmonics of the lattice response for different capac-
itance and inductance values, or equivalently, different cutoff
frequencies (the cutoff frequency is inversely proportional to
the square root of the product of the inductance and capacitance
values [25]). As the inductance and capacitance values increase
(equivalently, as the cutoff frequency decreases), the input
frequencies of intense harmonic response become smaller, a
fact that is also indicated by the plots of Fig. 5. For lattices with
cutoff frequencies different (bigger/smaller) than 300 GHz,
IHG appears at frequencies different (bigger/smaller) than
50 GHz. Due to this effect, the harmonic response of such
lattices at 50 GHz is degraded as displayed in Fig. 16(b).

V. CONCLUSIONS

The behavior of 2-D nonlinear inductor–capacitor lattices is
studied from a spectral point of view; perturbative solutions
for the harmonic response of these lattices are derived for ar-
bitrary-order polynomial nonlinearities. It is verified by simu-
lations, as well as experimental measurements that intense har-
monic amplification is observed when either the fundamental,
or one of its harmonics, is close to frequencies, which maximize
locally the spectral norm values of the lattice response matrix.
As a result, the IHG method is introduced. This method seeks
to minimize the total distance between two sets of frequencies,
which are: 1) the frequencies at which the spectral norm of the
lattice response matrix is locally maximized and 2) the excita-
tion frequency and its harmonics. Nonuniform distributions of
inductance and capacitance values, the lattice size, as well as
the inductor ohmic losses all affect the spectral norm of the lat-
tice response matrix, and, as a result, the lattice harmonic per-
formance. Although designing nonuniform lattices to improve
the lattice harmonic response appears to be a difficult task, re-
ducing the inductor losses or developing highly nonlinear ca-
pacitive elements are simple first steps towards implementing
these topologies for intense harmonic amplification. Simula-
tions using a 0.13- m CMOS process demonstrated harmonic
generation at frequencies three times the cutoff frequency of the
fastest device in this process, indicating potential extensions to
terahertz range applications.

APPENDIX

In order to study nonlinear wave interactions in a general
LC lattice, we have to express the coupled governing

current/voltage equations at the LC element level. These are the
Kirchhoff voltage and current laws. At node , these laws give
the system

(15)

where , , and are, respectively, the capacitance and
horizontal/vertical inductances of the LC element at node .
The fact that the inductors are nonideal is modeled by a small
ohmic resistance . The node voltage and the flowing currents
in the horizontal and vertical inductor of the LC element are
denoted by and .

For small perturbations around a fixed voltage value, a first-
order dependence of capacitance on the observed voltage value
at the node can be assumed, i.e.,

(16)

Applying (16) to the element equations (15) leads to

(17)

A mapping from the “local” node coordinates to a “global”
system index and a corresponding state vector are defined as
follows:

(18)

(19)

In order to derive a global system based on (17), we have to
define the following source voltage vector and boundary
currents according to Fig. 17:

(20)
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Fig. 17. Modeling of 2-D LC lattice.

(21)

where is the boundary termination resistance of the lattice and
is the source resistance. The boundary vector contains

the external voltage source values. Given the boundary condi-
tions of (20) and (21), system (17) can be assembled in a global
system

(22)

where is a diagonal matrix containing the capacitance
and inductance values , , and is a sparse matrix con-
taining 1, 1, , , , and values depending
on the lattice node connections (Fig. 17)

(23)

(24)

Assuming , is the following capacitance
matrix:

(25)

In order to solve perturbatively for the vector , we have to
express as a power series in the nonlinear coefficient

(26)

Plugging (26) into (22) and isolating the coefficients of the
powers of leads to

(27)

where is an expression that depends on the vectors

(28)

In order for (27) to be true for every value of , all the expres-
sions , must be equal to zero, i.e.,

(29)

Taking the Fourier transform of the last set of equations leads to
the following system:

(30)
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Here, the element-by-element multiplication in the time domain
is replaced by convolution in the frequency domain.
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