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Abstract—In this paper, we propose a 2-D electircal interferom-
eter as a means of high-speed data conversion. The structure is
based on wave propagation in 2-D lattices. We will discuss
the principle behind this technique, which exploits wave propaga-
tion and medium manipulation in order to take advantage of dif-
ferent interference patterns. This method of quantization is based
on passive lattices that can operate at very high frequencies
on a conventional CMOS process. We analyze different properties
of the structure and propose the design methodology. To show the
feasibility of this approach, we design a 20-GS/s 4-bit quantizer
consuming 194 mW for quanization and 943 mW for an analog
memory. There is good agreement between analysis and simula-
tion.

Index Terms—Analog-to-digital converter (ADC), CMOS, inter-
ference, lattice, power detector, quantization, tapering, wave
propagation.

I. INTRODUCTION

T HE GROWING demand for higher data rates is increasing
attention paid to extremely fast signal quantization. The

applications include equalization and detection in serial data
links, wideband radar and RF receivers, and high-speed in-
strumentations [1]–[9]. High-speed data conversion faces
different challenges both in the fundamental aspect due to
limited active device cutoff frequency and in implementation
aspects due to issues such as sampling jitter and clock/data
skew [6]. The fastest reported quantizers use high-performance
compound-semiconductor processes and/or time interleaving
to go beyond the speed limit of a single-channel data converter.
However, clock jitter and channel mismatch remain as the
main challenges of the time-interleaving approach [3]–[7]. To
address the issue of sampling jitter, optically assisted sampling
has been proposed, which can lower the jitter noise floor while
increasing the fabrication cost [5], [11].

Although conventionally analog signals are converted from
voltage or current domain directly to the digital domain, it is
not necessarily the most effective method because of active de-
vice limitations. In [10], time stretching in an optical medium
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Fig. 1. 2-D lattice as an electrical interferometer.

is proposed for fast quantization. In [11] and [12], optical sam-
pling/quantization using optical phase shifters and power de-
tectors has been proposed as another alternative for achieving
higher sampling rates. In our previous work, we proposed the
delay-line-based quantization, which exploits CMOS fast delay
cells for GSample/s and power-efficient data conversion [13],
[14].

In this paper, we will propose wave propagation in electrical
lattices as another means of signal quantization that can be used
for extremely high-speed data conversion on silicon. 1-D and
2-D lattices have been previously studied and exploited
in extremely high-speed signal generation and transmission
[15]–[21]. Another area in which lattices have shown
promising potential is fast signal processing [22]–[27]. Wave
propagation in discrete lattices is shown to behave similarly to
a continuum media provided the wavelength is considerably
larger than one lattice spacing. In this region of operation, 2-D
lattices behave similarly to an optical medium, and properties
such as diffraction and refraction are observed [24]–[26].

The general idea of using an lattice as a quantizer is por-
trayed in Fig. 1. The analog signal changes the properties of the
medium, which will in turn change the interference pattern in-
side the wave-propagating medium. The properties of the wave
can be changed by using varactors in the lattice and control-
ling their bias points. Furthermore, we can engineer the values of
inductors and capacitors at different points of the lattice to gen-
erate the desirable interference pattern. Since this kind of change
in lattice properties does not involve any signal processing with
active devices, it is inherently fast. Another way to describe the
process is that the analog signal is spread across the entire lat-
tice, making it a spatial quantizer. To the best of our knowledge,
this is the first structure that quantizes the analog signal in a 2-D
electrical lattice. Depending upon the way the lattice is de-
signed, certain nodes in the lattice become more vital for signal
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Fig. 2. Discrete 1-D transmission line.

detection. Since the amplitude of the pattern at these nodes mat-
ters, a power detector will be used to compare the power level
with a certain threshold.

This paper is organized as follows. In Section II, we will re-
view the behavior of waves in 1-D and 2-D lattices. The
analysis of the proposed quantizer is presented in Section III.
Finally, in Section IV, we propose the design methodology and
present the simulation results.

II. WAVE PROPAGATION AND INTERFERENCE IN LATTICES

Let us consider a 1-D discrete transmission line made of in-
ductors and capacitors, as shown in Fig. 2.

By applying Kirchoff’s current law at node , whose voltage
with respect to ground is , and applying Kirchoff’s voltage
law across the two inductors connected to this node, one can
show that the voltages of adjacent nodes on this transmission
line are related via

(1)

This differential equation can be analytically solved if induc-
tors and capacitors are identical [26]. For an inhomogeneous

line where (1) is different for each section, a continuum
model can be used to find the response. This model is based on
the assumption that the electrical length of each section is con-
siderably lower than the wavelength; thus, dispersion caused by
discreetness is negligible. This approach has been used in [20]
for analyzing an exponentially tapered transmission line with a
constant and product. In this paper, we perform tapering
by keeping the ratio constant, thus minimizing fluctua-
tion in the characteristic impedance . Keeping constant
ensures power matching along the line and consequently min-
imizes standing-wave formation, which can cause oscillation.
Hence, keeping constant reduces the settling time of the lat-
tice in response to the input change.

A. Exponential Tapering With Constant

In order to analyze a constant tapering, we choose the
inductance and capacitance of the th section to be

(2)

where , , and are constants. By substituting these values
into (1) and assuming that the values of inductance and capaci-
tance do not change abruptly between adjacent nodes ,
we can use the continuum limit to obtain a single differential
equation for the line. In this case, we can approximate (1) with
respect to its spatial derivatives assuming that the node spacing

is and the node location is . By performing the Taylor
series expansion of and around and neglecting
third-order and higher order terms, we can derive the continuum
limit differential equation

(3)

where and are unit length inductors
and capacitors of the line, is the continuous tapering
coefficient, and is the continuum limit of . Next, since

is constant, we assume a one-way traveling-wave solution

(4)

where we seek to find the function that fits best to the
phase-shift function. Inserting (4) into (3) results in

(5)

Based on sine and cosine coefficients, two independent equa-
tions can be derived from (5)

(6)

(7)

Solving (6) leads to

(8)

where is a constant. By replacing (8) into (7), we get a single
differential equation in terms of

(9)

Assuming smooth tapering in the line , we can assume
second-order derivative of the amplitude to be small. Thus, by
neglecting the first term in the right-hand side of (9), can
be solved as

(10)

Consequently, by substituting (10) into (8), can be derived
as

(11)

Now we return to the discrete node analysis by replacing
in (4) and substituting and with and

(12)
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Fig. 3. Time delay versus section number in a 1-D tapered line for different
tapering coefficients. Simulation is done with pH, fF, and

GHz and it is compared with our analysis.

From (12) and by looking at the exponential terms, we can
conclude that the variation in is slow compared to ;
thus, for our further analysis, we neglect the amplitude variation
across the line and only consider the phase variation. The delay
per section can be found as

(13)

Fig. 3 shows for different values of , where simulation
closely follows our analysis.

We can furthermore elaborate on (12) by approximating
with a second-order polynomial for a small tapering coefficient.
By only keeping the first three terms, we get

(14)

where is a constant phase shift and

(15)

is defined as the effective wavenumber at node . From the
above, we conclude that the exponential tapering will cause the
wavenumber to increase (decrease) linearly along the line for
positive (negative) values of . This also means that we get a
linearly decreasing (increasing) wavelength across the transmis-
sion line. Engineering the wavelength along the wave path is an
effective way to change the topography of the interference pat-
tern. We will exploit this property in designing interference pat-
terns.

B. Interference Pattern in 1-D Ladders

Let us consider a 1-D discrete transmission line with sec-
tions that is terminated with matched loads at both ends. We

apply in-phase sources to the two ends and observe the interfer-
ence pattern. The forward- and backward-propagating waves at
node can be written as

(16)

where is the complex propagation constant. By replacing
with , and applying superposition to the voltage node at
the th section of the line, the nodes’ voltages are derived as

(17)

where we define

(18)

in order to have a symmetric form around the center. Here,
is the loss of the line and is the propagation constant for a
lossless line. In (17), if the loss is small or if the nodes
of interest are around the center of the transmission line

, the two loss exponential terms in (17) are approximately
equal. Thus, we can rewrite (17) as

(19)

The above equation shows that due to interference, the voltage
amplitudes of the nodes are modulated across the line, by the
periodic function, .

The same analysis can be performed to find the interference
pattern inside a tapered line. We consider a centrally symmetric
tapering by choosing the values of inductors and capacitors as

(20)

As shown in Fig. 4, we can write the response of the trans-
mission line to (16) as the sum of the transmitted and reflected
waves in the two regions, where exponential tapering results of
(14) are valid. In this case, the voltage of the line can be ex-
pressed as

(21)

where

(22)

is the varying propagation constant, which is the same as in
(14). Since the characteristic impedance is kept constant across
the line, no reflection happens at the center boundary, which
means and
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Fig. 4. Incident and reflected waves across the two sections of the tapered 1-D
transmission line.

Fig. 5. Discrete 2-D transmission lattice.

. By applying this condition and the boundary
conditions at two ends of the line, the solution becomes

(23)

This solution is quite similar to (19), when we replace with
. We did not consider the effect of loss in the tapered line,

but by comparing (23) to the uniform line result of (19), we can
observe that the loss should similarly result in an amplitude peak
lower than .

C. Generalization to 2-D

A 2-D lattice composed of inductors and capacitors is shown
in Fig. 5. This lattice gives more degrees of freedom in designing
circuits as compared with a 1-D line. Although feeding the input
to a 2-D lattice is more complicated than a 1-D transmission line
and requires a power division network, for a given number of in-
ductors, the propagation length from the edge of the 2-D lattice
to its center is much less than a 1-D transmission line, which
makes 2-D structures more desirable in the presence of loss.

In this lattice, we assume that all four sides are terminated to
matched loads. In addition, we assume an rectangular

lattice and apply in-phase signal sources to all four boundaries.
Assuming no reflection on the sides, we can write the effect of
all four waves at each node of the lattice as

(24)

where and are the propagation constants in the two per-
pendicular directions. Since the four plane waves of the right
side of (24) only propagate in the - or -direction, we can
treat them as the solutions of orthogonal 1-D transmission lines.
Using a change of variable,

(25)

(24) is simplified to

(26)

If the lattice is central symmetric (i.e., and
), (26) becomes

(27)

The solution has a constant envelope , modulated by
two diagonal periodic functions. This 2-D modulation provides
a pattern that is well suited for the purpose of our quantizer.

III. INTERFEROMETRIC QUANTIZATION

Based on our analysis in Section II, we propose a method
for efficiently changing the interference pattern of an lat-
tice using MOS varactors. The change in the capacitors will
change the propagation constant and wavelength, which will
in turn change the voltage across lattice nodes. This change in
the voltage across the lattice will be detected for the purpose of
signal quantization.

A. MOS Varactor

A MOS varactor is a device operating in depletion or accu-
mulation mode, where changing the gate voltage changes the
effective capacitance [29]. The – curve of an accumulation
mode MOS varactor is shown in Fig. 6. The small-signal capac-
itance is defined as

(28)

For small variations, the – characteristic of Fig. 6 can be
approximated as

(29)



TOUSI AND AFSHARI: 2-D ELECTRICAL INTERFEROMETER 2553

Fig. 6. Characteristic of an accumulation mode MOS varactor.

where is the bias voltage across the varactor and and are
constants.

Even though (29) describes a nonlinear system, for small
input amplitudes around a bias voltage of , we can neglect the
effect of nonlinearity and approximate the current across the ca-
pacitor by

(30)

Thus, if capacitances in Fig. 2 are replaced by varactors,
we can simply rewrite (1) by replacing all capacitors with the
varactor small-signal capacitance . Based on this linear
model, we use varactors to change wave propagation and its
interference pattern in an lattice.

B. 2-D Lattice Quantization

In the 2-D lattice described in Section II, if we replace
the capacitors with varactors, the voltage swing at the th row
and th column would be

(31)

where

(32)

We propose the following quantization method.
1) Apply a sample of the analog signal to the bottom plate of

the varactors, resulting in a change of their capacitance by
changing the bias point .

2) Apply small-signal in-phase sinusoidal inputs to all sides
of the lattice.

3) Four plane waves generated by the input sources propagate
inside the lattice and form the interference pattern. This
pattern depends on the value of the varactors, and hence, is
a function of the analog signal.

4) Using a power detector, we detect the output power at cer-
tain nodes of the lattice.

Fig. 7. 2-D lattice interference pattern and its central lobe. The contours rep-
resent nodes of the lattice with equal voltage amplitudes and the dashed lines
represent nodes with zero amplitude. The voltage levels are normalized with re-
spect to the input voltage level.

5) The detected output is compared with a threshold level, .
The nodes above are defined as logic 1, and the nodes
below it are defined as logic 0.

6) The total number of logic 1 outputs, , is the digital
output code.

In order to show how is related to the analog signal, we
need to know which outputs are suitable for this kind of quan-
tization. There is no unique way to select the output as long as
a monotonic relation between the analog input and the quan-
tized output holds. We will show that by using the lattice nodes
at the first lobe of the interference pattern (in the center of the
lattice), we obtain the desired relationship. We can find other
selection sets that can result in the same relation, but in terms
of implementation it is desirable to have processing nodes close
to each other to minimize routing issues and to share similar
circuit blocks. Also, from loss analysis done in Section II, we
concluded that the effect of loss on the amplitude modulation
will be negligible at the central nodes.

A typical interference pattern for a uniform 2-D lattice is
shown in Fig. 7. The first interference lobe is surrounded by
the dashed lines in the center of the lattice. We are interested
in finding the number of nodes that satisfy inside
this region. From (31), the first lobe can be mathematically de-
scribed as

(33)

For the nodes close enough to the center, we can perform a
Taylor series expansion on the voltage waveform of (31) with
respect to and and neglect third-order and higher
order terms to obtain

(34)

Neglecting higher order terms and substituting (32) into (34),
we have

(35)
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Fig. 8. Analysis versus circuit simulation of the quantizer input–output relation
for a uniform lattice with pH and , as in Fig. 6. The comparison
is performed for mV (blue in online version), mV (red in
online version), and mV (green in online version). In order to take
into account the effect of loss in the analysis, a smaller input swing is a applied
to (37).

where

(36)

is the lattice cutoff frequency in the orthogonal direction. Note
that in 2-D lattices depends on the wavefront direction [27].
The nodes that satisfy (34) are within a circle with a radius

equal to the square root of the right-hand side of (35). The
number of nodes inside this circle is equal to its area

(37)

Thus, the quantized output code is, approximately, linearly pro-
portional to the input analog voltage. Note that the proportion-
ality factor will be

(38)

From the above, we can conclude that the quantizer will have
higher resolution when capacitor variation is higher, the op-
erating frequency is much less than the cutoff, and the threshold
voltage is lower. As shown in Fig. 8, simulation results
follow the predicted behavior in (37) with minor deviations,
which is mostly due to the linear and continuum approximations
we made through the analysis.

It is worth mentioning that the circular region is accurate
when the threshold voltage is close to the peak voltage . As
the threshold increases, the circular region gradually transforms
to a rectangular region. This transformation can be clearly seen
in the constant envelope contours of Fig. 7. For , we have

Fig. 9. 2-D lattice with central symmetric tapering.

the whole square-shaped central lobe, with its diagonal equal to
the wavelength , and we can write

(39)

(40)

This result is slightly different than (38) in the proportionality
factor, but the input–output relation is similar.

C. Effect of Tapering

The above analysis is based on a uniform lattice, but this is
not necessarily the best implementation. Since we are only in-
terested in the central lobe of the interference pattern, a uniform
tapering is not optimum. In Section II, we showed that a constant

ratio tapering in 1-D gradually decreases the wavelength,
which means that the interference pattern has a shorter wave-
length at the center. In other words, the central lobe is focused
with respect to other lobes.

In a 2-D lattice, by applying this tapering in both dimensions,
for a positive , the central lobe becomes smaller and more fo-
cused, while for a negative , the central lobe becomes larger
and more dispersed. In Fig. 9, such a central symmetric tapering
with a positive is shown. We can use tapering to get better res-
olution on the nodes of interest.

IV. QUANTIZER DESIGN AND SIMULATION

In order to get the best performance out of the proposed quan-
tizer, we need to optimally design different aspects of the struc-
tures. From (38), the quantization factor is a strong function of
the ratio of the lattice cutoff frequency to the carrier frequency,
and a higher ratio provides a better resolution.

On the other hand, the lattice response time plays a major role
in the overall quantization speed. Since we maintain matching
conditions in the entire lattice, reflection over the boundaries is
minimal. Hence, the time it takes for the lattice to respond to a
change in the analog input will be the time it takes for the wave
to travel through the lattice sections. For frequencies reasonably
below the cutoff, we can write this time as

(41)
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where and are the inductance and capacitance of the th
section, respectively. One can achieve the fastest response time
by setting ’s equal to and ’s equal to

(42)

where we have substituted for from (36). Note that, if the
nodes of interest are close to the center of the lattice, only half
of the lattice sections count to the overall delay, which will sig-
nificantly reduce the response time.

Equations (38) and (42) suggest that a higher will result
in higher resolution and higher speed, respectively. Thus, the
reasonable way to design the lattice is to choose to be the
highest possible value implementable in a certain technology.
In a properly designed structure, because of the high cutoff fre-
quency of the lattice, we expect the rest of the circuit, including
the power detector and the memories, to be the overall limiting
factor. For this study, we use TSMC’s 65-nm standard CMOS
technology, and we use Cadence for the simulations [31].

A. 2-D Lattice

The 2-D lattice shown in Fig. 5 gives us a vast degree of
freedom in choosing the inductors and capacitors as long as the

ratio remains constant everywhere. We start by choosing
and for a maximum . The lowest possible varactor

in the process with minimum dimensions has an average
of around 9 fF. Below this value, the parasitic capacitance be-
comes significant. The characteristic of this varactor is shown
in Fig. 6. Furthermore, we select pH since this is the
smallest lumped inductor that is modeled in the process. Cus-
tomary inductors smaller than this value can also be designed
by performing extensive electromagnetic modeling and simula-
tion. With these values, the characteristic impedance of the line
will be , which is a practical value for
implementation. Also, from (36), GHz,
which is much higher than carrier frequencies that CMOS de-
vices can handle. Thus, the signal wavelength is much shorter
than the lattice spacing and our analysis based on a continuum
model is valid.

In order to estimate the effect of loss in the lattice, the quality
factors of the inductor and capacitor are plotted in
Fig. 10 In a continuum approximation, for the lattice quality
factor, we have , where

(43)

and

(44)

are the real and imaginary parts, respectively, of the propagation
constant [28]. The loss of the varactor is clearly dominant for
high frequencies and will dominate the overall lattice quality
factor. We concluded from our analysis in Section III that in
order to have an effective interference pattern formation, loss
should be small, and simulation results suggest that a quality

Fig. 10. Inductor and capacitor quality factor versus frequency. The design
point is shown by the dashed line.

factor higher than 5 is required for an effective interference pat-
tern formation. As a result, from Fig. 10, we choose our carrier
frequency to be 60 GHz.

The next step is to decide on lattice dimensions and any pos-
sible tapering. From our analysis in Section III, and as a rule of
thumb, we desire to have the entire central lobe of the interfer-
ence pattern inside the lattice. Thus, from Fig. 7 and (39), the
dimensions should be around , or

(45)

For GHz and GHz, we get . This
is a relatively large number considering the amount of loss in
the lattice. Furthermore, since power splitting is more efficient
for powers-of-2 numbers of inputs, we choose as the
closest one and will use tapering in order to focus the pattern in
this smaller dimension.

Although from Fig. 10, going to lower frequencies enhances
the lattice quality factor, but because the detector needs few pe-
riods of the carrier frequency to detect the voltage level, the car-
rier frequency needs to be higher than the sampling frequency.
This is to say that the maximum value of the carrier frequency is
set by the quality factor of the varactors and its minimum is de-
termined by the speed of the detectors. In order to estimate the
maximum achievable sampling rate, we should take into account
both the lattice delay and the detection time. By dedicating
two periods of the carrier for the detector, we can estimate the
maximum sampling rate as

(46)

The fastest sampling rate can be achieved in a uniform lattice,
where for , we get GS/s. Due to
tapering in our final design, becomes slightly higher than

. However, the detector response time remains as the lim-
iting factor in (46); thus, we choose a 50-ps response time cor-
responding to GS/s for this design.

From our discussion in Section II, a tapered line with
decreases the wavelength, and we expect a smaller lobe com-
pared with a uniform profile. Our simulation results show in
Fig. 11 that is sufficient to fit the first lobe into the
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Fig. 11. Uniform versus tapered lattice output. (top) Uniform lattice with
and . (bottom) Constant tapered lattice with tapering factor of

. The tapered lattice focuses the first interference lobe to fit inside the
16 16 lattice. Simulation is done with source amplitudes of 50 mV.

Fig. 12. Quantizer’s output characteristic with and without tapering. All inputs
are ideal matched sources with input amplitude of 50 mV. The simulation is
done for mV (blue in online version), mV (red in online
version), and mV (green in online version). We observe the effect
of tapering, which is focusing the variation in a smaller number of nodes while
maintaining the desired input–output trend.

16 16 lattice. Also from Fig. 11, the tapering gives a larger
peak amplitude, which is desirable in the detection process.

Fig. 12 shows the quantized output versus the analog input
for different ’s. By performing simulations with different
threshold levels, , we can choose the best value for our de-
sign. In this design, we choose mV to get a sufficiently
large dynamic range.

B. Specifying the Input–Output Characteristic

The derived characteristic of Fig. 12 is assuming that all lat-
tice nodes outputs in the first lobe are counted. This is nei-
ther practical, nor useful considering the resulting input–output
curve, which is not desirable for many ADC applications. For
a more practical input–output characteristic, we will choose a
subset of these nodes. An input–output curve, , can be
extracted from the original curve provided that

(47)

For any curve satisfying (47) across the whole input range, the
total number of node transitions from logic 0 to logic 1 at de-
sired input levels are equal or more than the re-
quired number . Thus, one should select the subset
of desired transition points and the nodes corresponding to them.
In transition points that more than one node is there to choose
from, we tend to choose the nodes in a uniform pattern across
the lattice. This will minimize the loading effect of the detec-
tors on the lattice characteristic impedance. Fig. 13(a) shows a
16-level (4 bit) linear characteristic, satisfying (47), achieved by
choosing only 16 nodes of the lattice.

Even though a linear quantizer is usually used for commu-
nication applications, other characteristics may also be desired.
Some signals tend to occur more frequently at low amplitudes,
which makes a saturating characteristic more optimal for their
quantization [30]. In order to show this possibility, a saturated
quantizer is designed, as shown in Fig. 13(b). Also, by dynam-
ically changing the selection set, we have the ability to dynam-
ically change the quantizer’s characteristic, which can be po-
tentially very useful. As an example, in RF receivers where the
received signal power changes from time to time, we can use a
variable quantizer in addition to the variable-gain amplifiers to
dynamically tune the total gain of the signal path.

C. Detector and Memory

Fig. 14 shows the detector circuit, which is composed of two
parallel self-mixers. The input node with amplitude is con-
nected to , , and . Since the input node is single-ended,
the other three nodes are connected to bias voltages. The refer-
ence signal with an amplitude is applied to the other mixer
through , , and . The output voltage is proportional
to with a proportionality factor depending on devices’
transconductances. The width and length of are 4 m
and 60 nm, respectively. We have designed the detector by si-
multaneously minimizing its loading on the lattice and its re-
sponse time.

The sign of the differential output is the actual logic level of
the detector. From this point, since the differential output is still
small, we will amplify the signal to the desired level. In order
to maximize the sampling speed, we propose a pipeline ampli-
fication technique. In this method, the output of the detector is
applied to a cascade of sampled mode gain stages. Each gain
stage samples the output of the previous stage, amplifies it to the
maximum possible level during the time window, and provides
the higher voltage level to the next stage. In Fig. 15, one such
stage is shown in which the output of the th stage is sampled
on a capacitor and at the next phase it is applied to the th
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Fig. 13. Quantizer output versus input voltage for two different selection sets showing two examples of various achievable input–output characteristics. (top left)
16-level or 4-bit linear quantizer. (top right) Its selection set for output nodes. (bottom left) Logarithmic (saturating) quantizer. (bottom right) Its selection set for
output nodes.

Fig. 14. Voltage detector circuit with input and reference inputs and the differ-
ential output.

stage. Capacitors and are both 5 fF and they sample the
signal in turns, meaning that while one is sampling, the other is
being reset. The switched capacitors are controlled by NMOS
switches with phases to .

This technique is, in fact, a high-speed analog shift register, in
which the logic bit is shifted and amplified across the stages and
the gain stages can also be considered as part of the memory.
The gain stages are designed for maximum gain in the pro-
vided 50-ps settling time. A two-stage differential pair shows

Fig. 15. th stage of the cascaded amplification circuit with the switches and
the four clock phases.

optimum functionality for each gain stage. The transient re-
sponse of the detector and the first two gain stages are shown
in Fig. 16. The results show that the detector output response
is fast enough to be sampled in the 50-ps time window. Fig. 17
shows the time-domain simulation of the lattice connected to
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Fig. 16. (top) Detector’s transient response for mV and
mV. (bottom) First gain stage (blue in online version) and second gain stage

(red in online version) sampled voltages for the above detector output. The first
gain-stage samples the detectors output and amplifies it in a 50-ps time window.
For the next 50 ps, the second stage amplifies the previous output, while the fist
stage is being reset. The sign of the detector output is the logic state, which, in
this case, is positive .

Fig. 17. Time-domain simulation. Input sinusoid at 1.7 GHz (blue in online
version) and the digital output (red in online version). All other parameters are
the same as the constant input simulations we performed before.

the detector circuit. The corresponding spectrum of the digital
output is plotted in Fig. 18.

D. Design Summary and Comparison

We showed that with a 16 16 tapered lattice we can achieve
at least 4 bits of linear quantization. The detector circuit’s re-
sponse time combined with the lattice delay from (46) achieves

Fig. 18. Digital output fourier transform for 256 samples of the output.

a sampling rate of 20 GS/s. The dc current of the detector is
5 mA from a 1.2-V supply, and with double sampling performed
to achieve the desired sampling rate, each detection node con-
sumes 10 mA of current. The gain stage amplifiers consume
3 mA each. The number of gain stages used depends on the
logic output level required for the memory. For our design, we
require detection of mV, and from simulation, for

mV, the detector output is around 50 V after
50 ps. Thus, to achieve an output level as large as 0.2 V, the
number of stages will be

(48)

where, similar to the detection part, the factor of 2 comes from
double sampling. The power required to drive the 16 16 lattice
at all four sides for the 50-mV input amplitude is

mW (49)

The total detection power is the sum of the detector and the
lattice power

mA V (50)

Table I compares the proposed quantizer with other reported
designs. The comparison is performed both with and without
taking into account the analog memory. The reason is that the
memory is not the essential part for the detection, and as soon as
the output is quantized, the data can be stored in many ways. For
example, time interleaving can be used to design a memory with
a considerably lower sampling rate and power consumption.

It is noteworthy that we do not have measurement results of
this structure and the comparison might not be fair. As a re-
sult, we do not draw any conclusions beyond the fact that this
structure shows great potential as a high-speed power-efficient
quantizer.

E. Effect of Noise and Phase Mismatch

The main effects that can degrade the performance of the in-
terferometric quantizer are thermal noise and phase mismatch
between input sources. Thermal noise is caused by the source
impedance and also the detector circuit, while phase mismatch
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TABLE I
PERFORMANCE COMPARISON OF STATE-OF-THE-ART ADCs

between the inputs happen randomly mostly due to process vari-
ation across the substrate. To capture both of these effects, we
model the th input source as

(51)

where is the additive white Gaussian noise and is a random
phase. For , we assume a Gaussian distribution with zero
mean and variance of . From our analysis in Section II-C,
the voltage of any node inside the 2-D lattice is a superposition
of four input sources that are in the same column and row as
that node. This is assuming that the phase mismatch between
sources on one edge of the lattice is not large, and hence, the
direction of the wave is not significantly changed. By applying
the nonideal sources of (51) to (24), we can write the voltage
of each node as

(52)

where we have given indices to the independent noise and mis-
match sources and represents the phase shift due to the
wave propagating along the lattice. Assuming that and

, we can simplify the superposition of the four nodes
from (52) to

(53)

The first term in (53) is the desired amplitude coming from
(27), while the next two term are the effect of noise and phase
mismatch, respectively. We now substitute (53) into (34) and
follow the same approximation to get the quantizer output ,
shown in (54), at the bottom of this page. In order to find the
signal to noise plus distortion ratio (SNDR), we calculate the
output power by assuming independent noise and mismatch

Fig. 19. Noise and mismatch limits for different values of SNDR. The lattice
parameters are as specified in Section IV-D. The input is assumed to be a
sinusoid with an amplitude of 150 mV.

sources. We replace noise terms with noise power of and
mismatch terms with to get

(55)

The SNDR can be calculated from (55) by taking into account
the signal and noise powers

(56)

Form (56), one can find the requirement on noise and phase mis-
match for a particular SNDR. Fig. 19 shows the relation between
these two noise sources for achieving a desired SNDR based on
our analysis.

V. CONCLUSION

2-D electrical lattices have been used in signal generation and
processing. By engineering the lattice and changing its proper-
ties with an analog input, we can form various interference pat-

(54)
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terns that can be exploited for high-speed signal quantization.
We described the theory of interference in 2-D lattices, pattern
formation, and the effect of lattice tapering. Next, we designed
and simulated a 4-bit 20-GS/s quantizer in a 65-nm CMOS tech-
nology. This is the first proposed quantizer in CMOS at this sam-
pling rate without time interleaving. It also has a remarkably low
power consumption as compared to conventional structures and
shows potential in low power detection of very high-speed sig-
nals.
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